mindspore框架实现手写体识别
时间: 2023-11-06 10:07:15 浏览: 162
MindSpore是华为公司开发的一款AI开发框架,可以用于实现各种任务,包括手写体识别。以下是一个简单的手写体识别的示例,仅供参考:
1. 准备数据集
手写数字识别可以使用MNIST数据集,我们可以使用tensorflow提供的API来下载和读取数据集。代码如下:
```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
```
2. 构建模型
我们可以使用卷积神经网络(Convolutional Neural Network, CNN)来实现手写数字识别。以下是一个简单的CNN模型:
```
import mindspore.nn as nn
import mindspore.ops.operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, pad_mode='valid')
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, pad_mode='valid')
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(in_channels=1024, out_channels=10)
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.flatten(x)
x = self.fc1(x)
return x
```
3. 定义损失函数和优化器
在训练模型时,我们需要定义损失函数和优化器。这里我们使用交叉熵损失函数和Adam优化器。
```
net = Net()
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = nn.Adam(params=net.trainable_params(), learning_rate=0.001)
```
4. 训练模型
定义好模型和损失函数后,我们可以开始训练模型。训练过程大致分为以下几步:
- 将数据输入模型,计算输出结果
- 计算损失函数
- 反向传播,更新模型参数
```
from mindspore.train.callback import LossMonitor
from mindspore.train.serialization import load_checkpoint, save_checkpoint
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore import Tensor
epoch_size = 5
batch_size = 32
config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)
ckpoint_cb = ModelCheckpoint(prefix="train_lenet", directory="./", config=config_ck)
net.set_train()
for epoch in range(epoch_size):
train_loss = 0.0
train_acc = 0.0
step = 0
for data, label in train_loader:
optimizer.clear_grad()
output = net(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
train_loss += loss.asnumpy()
train_acc += (np.argmax(output.asnumpy(), axis=1) == np.argmax(label.asnumpy(), axis=1)).sum()
step += 1
if step % 100 == 0:
print("epoch: {}, step: {}, loss is {}".format(epoch, step, loss.asnumpy()))
print("epoch: {}, average loss is {}, accuracy is {}".format(epoch, train_loss / step, train_acc / train_size))
save_checkpoint(net, './train_lenet.ckpt')
```
5. 测试模型
训练完模型后,我们可以使用测试集来测试模型的性能。代码如下:
```
net.set_train(False)
test_acc = 0.0
for data, label in test_loader:
output = net(data)
test_acc += (np.argmax(output.asnumpy(), axis=1) == np.argmax(label.asnumpy(), axis=1)).sum()
print("Test accuracy is {}".format(test_acc / test_size))
```
以上是一个简单的手写数字识别示例,具体实现细节可以参考MindSpore的官方文档和示例代码。
阅读全文