torch搭建eegnet模型的代码
时间: 2024-01-21 13:16:51 浏览: 109
下面是使用PyTorch搭建EEGNet模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class EEGNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(EEGNet, self).__init__()
self.T = 750 # 输入序列的长度
self.n_channels = n_channels # 输入通道数
self.n_classes = n_classes # 输出类别数
# 第一层卷积
self.conv1 = nn.Conv2d(1, 16, (1, 64), padding=(0, 32))
self.batchnorm1 = nn.BatchNorm2d(16, False)
# 深度可分离卷积
self.depthwiseConv = nn.Conv2d(16, 32, (self.n_channels, 1), groups=16, bias=False)
self.batchnorm2 = nn.BatchNorm2d(32, False)
self.activation1 = nn.ReLU()
self.avgpool1 = nn.AvgPool2d((1, 4))
self.dropout1 = nn.Dropout(p=0.5)
# 卷积层
self.conv2 = nn.Conv2d(32, 32, (1, 16), padding=(0, 8))
self.batchnorm3 = nn.BatchNorm2d(32, False)
self.activation2 = nn.ReLU()
self.avgpool2 = nn.AvgPool2d((1, 8))
self.dropout2 = nn.Dropout(p=0.5)
# 全连接层
self.fc = nn.Linear(736, self.n_classes)
def forward(self, x):
# 输入为(batch_size, n_channels, T)
x = x.unsqueeze(1) # 转换为(batch_size, 1, n_channels, T)
# 第一层卷积
x = self.conv1(x)
x = self.batchnorm1(x)
x = F.elu(x)
x = F.dropout(x, p=0.25)
x = F.max_pool2d(x, (1, 4))
# 深度可分离卷积
x = self.depthwiseConv(x)
x = self.batchnorm2(x)
x = F.elu(x)
x = self.avgpool1(x)
x = self.dropout1(x)
# 卷积层
x = self.conv2(x)
x = self.batchnorm3(x)
x = F.elu(x)
x = self.avgpool2(x)
x = self.dropout2(x)
# 全连接层
x = x.view(-1, 736)
x = self.fc(x)
return x
```
在这个示例代码中,我们定义了一个名为EEGNet的类,它继承自nn.Module。这个类中包含了模型的定义,包括各层的超参数、权重和偏置。
在`__init__`函数中,我们首先定义了一些超参数,包括输入序列的长度、输入通道数和输出类别数。然后,我们定义了模型的各层,包括第一层卷积、深度可分离卷积、卷积层和全连接层。在每个层中,我们都定义了该层的超参数和权重。
在`forward`函数中,我们首先将输入转换为(batch_size, 1, n_channels, T)的形式,然后依次通过每个层。最后,我们将输出reshape成(batch_size, 736)的形式,并通过全连接层得到最终输出。
阅读全文