给我一份excel数据集的GA优化svr预测的有对比图的代码
时间: 2024-02-09 12:09:10 浏览: 77
遗传算法GA优化支持向量机回归算法SVR,python写,自带数据集
好的,以下是一份Python代码示例,可以使用GA优化SVR预测Excel数据集并生成对比图:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from pyeasyga import pyeasyga
import numpy as np
# 读入Excel数据集
data = pd.read_excel('data.xlsx')
# 将数据集分为特征和标签
X = data.drop('label', axis=1)
y = data['label']
# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 特征数据标准化
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# 定义SVR模型
def svr_fitness(solution, data):
# 从GA解中获取参数并训练SVR模型
C = solution[0]
epsilon = solution[1]
gamma = solution[2]
svr = SVR(C=C, epsilon=epsilon, gamma=gamma)
svr.fit(data['X_train'], data['y_train'])
# 预测测试集并计算MSE
y_pred = svr.predict(data['X_test'])
mse = mean_squared_error(data['y_test'], y_pred)
# 返回适应度值
return 1 / (mse + 1e-6)
# 初始化GA
def create_individual(data):
return [np.random.uniform(0, 100), np.random.uniform(0, 1), np.random.uniform(0, 1)]
ga = pyeasyga.GeneticAlgorithm(data=X_train,
fitness_func=svr_fitness,
maximise_fitness=True,
population_size=50,
generations=10,
mutation_probability=0.1,
elitism=True,
crossover_probability=0.8,
initial_population=create_individual)
# 运行GA
ga.run()
# 从最优解中获取参数
C = ga.best_individual()[0]
epsilon = ga.best_individual()[1]
gamma = ga.best_individual()[2]
# 训练最优参数下的SVR模型
svr = SVR(C=C, epsilon=epsilon, gamma=gamma)
svr.fit(X_train, y_train)
# 在测试集上进行预测并绘制对比图
y_pred_svr = svr.predict(X_test)
plt.plot(y_test, label='Actual')
plt.plot(y_pred_svr, label='SVR')
plt.legend()
plt.show()
```
这份代码使用了pyeasyga库来实现GA算法,使用sklearn库中的SVR模型进行预测,并使用matplotlib库绘制对比图。在运行代码之前,需要将Excel数据集保存为名为"data.xlsx"的文件并放在与代码同一目录下。在代码运行后,会输出GA算法的运行过程和最优解所对应的SVR模型的预测结果对比图。注意,代码中使用了一些GA算法的参数,如变异率、精英策略等,这些参数可以根据数据集的不同进行调整。
阅读全文