target_expanded.scatter_(1, targets.contiguous().view(-1, 1).data, 1.0)
时间: 2024-05-26 14:17:33 浏览: 61
这行代码的作用是将一个长度为n的向量target_expanded进行扩展,使其变成一个大小为(n,k)的矩阵,其中第i行的第j个元素为1当且仅当targets[i]=j,其余元素为0。这个操作通常用于将目标标签转化为一个one-hot编码形式,便于后续计算交叉熵等损失函数。具体来说,这行代码使用PyTorch中的scatter_函数,将值为1的标量依次填入target_expanded矩阵的对应位置,其中参数1表示按行进行操作,参数targets.view(-1,1).data表示将目标标签targets转化为列向量,并去掉其梯度信息。
相关问题
帮我看看这段代码报错原因:Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 272, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 48, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/losses.py", line 37, in forward index.scatter_(1, target.data.view(-1, 1), 1) IndexError: scatter_(): Expected dtype int64 for index. 部分代码如下:cls_num_list = np.zeros(classes) for _, label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight)
根据报错信息,可以看出问题出在这一行代码上:`index.scatter_(1, target.data.view(-1, 1), 1)`,报错信息中指出 `scatter_()` 函数期望得到的是 int64 类型的索引,但是目前传入的 `target.data.view(-1, 1)` 返回的类型不是 int64。
可以尝试修改这一行代码,将 `target.data.view(-1, 1)` 的类型转换为 int64 类型,如下所示:
```
index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1)
```
这里使用了 `torch.LongTensor` 将类型转换为 int64。
阅读全文