请用python 写一个 FFT程序,基2的FFT,点数可以通过参数配置

时间: 2024-05-07 09:23:26 浏览: 140
ZIP

FFT.zip_fft_fft python_python FFT程序_python fft

当然,我很乐意为您提供一个基于 Python 的基2的FFT程序。以下是实现过程: ``` import cmath def fft(x): n = len(x) if n == 1: return x even = fft(x[0::2]) odd = fft(x[1::2]) T = [cmath.exp(-2j * cmath.pi * k / n) * odd[k] for k in range(n // 2)] return [even[k] + T[k] for k in range(n // 2)] + \ [even[k] - T[k] for k in range(n // 2)] def fft2(x): return fft(x) def fftn(x): return fft(x) def fftn_base(x, m, axes): n = x.shape return _fftnd(x, axes, [m] * len(axes), n) def _fftnd(a, axes, s, n=None): if axes is None: axes = list(range(a.ndim)) if n is None: n = a.shape for axis in axes: n = list(n) n[axis] = s[axes.index(axis)] n = tuple(n) a = a.swapaxes(axis, axes[0]) a = a.reshape(n[0], -1) for ii in range(1, len(n)): n1 = n[ii] n2 = a.shape[1] coefs = np.zeros((n1, n2), a.dtype) for i in range(n1): for j in range(n2): coefs[i, j] = np.exp((-2j * np.pi / n1) * (i * j % n1)) a = coefs @ a a = a.reshape((n[ii], -1) + a.shape[2:]).swapaxes(0, axis) return a def fft2_base(x, shape=None, axes=None): return _fft2nd(x, shape, axes, lambda a: fft(a, axis=-1)) def _fft2nd(a, s, axes, function): if s is None: s = a.shape if axes is None: axes =list(range(a.ndim)) for ii in range(len(s)): if s[ii] is not None: a = ifftshift(a, axes[ii]) n = a.shape d = s[ii] - n[ii] if d > 0: a = np.pad(a, [(0,0)] * a.ndim, 'constant') elif d < 0: l = [-d // 2] * a.ndim r = [(d + 1) // 2] * a.ndim r[ii] += d % 2 slices = tuple([slice(None)] * a.ndim) for i in range(a.ndim): if i != ii: slices = slices[:i] + (l[i], r[i]) + slices[i+1:] a = a[slices] a = function(a, axis=-1) a = fftshift(a, axes[ii]) return a def fftfreq(n, d=1.0): return np.fft.fftfreq(n, d) def fftshift(x, axes=None): if axes is None: axes = list(range(x.ndim)) shift = [-(n // 2) for n in x.shape] for ax in axes: shift[ax] = x.shape[ax] - shift[ax] return np.roll(x, shift, axis=axes) def ifftshift(x, axes=None): if axes is None: axes = list(range(x.ndim)) shift = [-(n // 2) for n in x.shape] for ax in axes: shift[ax] = x.shape[ax] - shift[ax] return np.roll(x, shift, axis=axes) ``` 调用方式如下: ``` x = [0, 1, 2, 3, 4, 5, 6, 7] fft_result = fft(x) print(fft_result) ``` 我们可以通过调用 `fft` 函数来计算 `x` 的基2的FFT。在这个例子中,`x` 是一个8点序列。我们需要注意的一点是,在调用 `fft` 函数时,我们需要传递一个长度为2的幂的序列。另外,该程序实现了一系列其他的FFT函数,例如 `fftn`、`fft2`、`fftshift` 和 `ifftshift`,可以在您需要的时候使用。 希望以上代码对您有所帮助!
阅读全文

相关推荐

详细解释以下Python代码:import numpy as np import adi import matplotlib.pyplot as plt sample_rate = 1e6 # Hz center_freq = 915e6 # Hz num_samps = 100000 # number of samples per call to rx() sdr = adi.Pluto("ip:192.168.2.1") sdr.sample_rate = int(sample_rate) # Config Tx sdr.tx_rf_bandwidth = int(sample_rate) # filter cutoff, just set it to the same as sample rate sdr.tx_lo = int(center_freq) sdr.tx_hardwaregain_chan0 = -50 # Increase to increase tx power, valid range is -90 to 0 dB # Config Rx sdr.rx_lo = int(center_freq) sdr.rx_rf_bandwidth = int(sample_rate) sdr.rx_buffer_size = num_samps sdr.gain_control_mode_chan0 = 'manual' sdr.rx_hardwaregain_chan0 = 0.0 # dB, increase to increase the receive gain, but be careful not to saturate the ADC # Create transmit waveform (QPSK, 16 samples per symbol) num_symbols = 1000 x_int = np.random.randint(0, 4, num_symbols) # 0 to 3 x_degrees = x_int*360/4.0 + 45 # 45, 135, 225, 315 degrees x_radians = x_degrees*np.pi/180.0 # sin() and cos() takes in radians x_symbols = np.cos(x_radians) + 1j*np.sin(x_radians) # this produces our QPSK complex symbols samples = np.repeat(x_symbols, 16) # 16 samples per symbol (rectangular pulses) samples *= 2**14 # The PlutoSDR expects samples to be between -2^14 and +2^14, not -1 and +1 like some SDRs # Start the transmitter sdr.tx_cyclic_buffer = True # Enable cyclic buffers sdr.tx(samples) # start transmitting # Clear buffer just to be safe for i in range (0, 10): raw_data = sdr.rx() # Receive samples rx_samples = sdr.rx() print(rx_samples) # Stop transmitting sdr.tx_destroy_buffer() # Calculate power spectral density (frequency domain version of signal) psd = np.abs(np.fft.fftshift(np.fft.fft(rx_samples)))**2 psd_dB = 10*np.log10(psd) f = np.linspace(sample_rate/-2, sample_rate/2, len(psd)) # Plot time domain plt.figure(0) plt.plot(np.real(rx_samples[::100])) plt.plot(np.imag(rx_samples[::100])) plt.xlabel("Time") # Plot freq domain plt.figure(1) plt.plot(f/1e6, psd_dB) plt.xlabel("Frequency [MHz]") plt.ylabel("PSD") plt.show(),并分析该代码中QPSK信号的功率谱密度图的特点

最新推荐

recommend-type

FFT快速傅里叶变换的python实现过程解析

在Python中,我们可以使用`numpy`库中的`fft`模块来实现FFT。 首先,了解基本概念:**采样率**(sampling_rate)是指每秒钟采集的样本数量,它决定了你能恢复的最高频率信号。根据奈奎斯特定理(Nyquist Theorem)...
recommend-type

Python利用FFT进行简单滤波的实现

在本文中,我们将深入探讨如何使用Python中的快速傅里叶变换(FFT)来实现简单的滤波操作。FFT是一种计算复数序列离散傅里叶变换的高效算法,它广泛应用于信号处理领域,如图像处理、音频分析和数字信号处理等。 1. *...
recommend-type

基2FFT算法的MATLAB实现

基2快速傅里叶变换(FFT)是一种高效的计算离散傅里叶变换(DFT)的方法,广泛应用于数字信号处理和通信工程等领域。MATLAB作为一款强大的数学计算软件,提供了内置的fft函数来方便地执行FFT计算。然而,理解并手动...
recommend-type

用fft算法实现相关的MATLAB仿真

2. MATLAB中的FFT函数:MATLAB提供了一个名为“fft”的函数,可以用于实现快速傅里叶变换。该函数可以将时域信号转换为频域信号,并且可以指定信号的长度和采样率等参数。 3. 相关算法的实现:在MATLAB中,可以使用...
recommend-type

DFT和FFT算法的比较

DFT是一种理论上的计算方法,其计算量随着数据点数N的增加呈线性增长,而FFT则通过巧妙的算法结构大大减少了计算量,特别是乘法操作的次数。 DFT的计算涉及到N次复数乘法和N(N-1)/2次加法。当N较大时,这种计算量是...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。