简述机器学习降维,举例线性降维,非线性降维
时间: 2023-06-23 09:05:02 浏览: 153
机器学习中的降维指的是将高维数据转化为低维数据的过程。这个过程可以帮助我们处理大量的高维数据,减少计算的复杂度,提高模型的训练效率和泛化能力。
线性降维是指通过线性变换将高维数据映射到低维空间。其中最常见的线性降维方法是主成分分析(PCA)。PCA将原始数据转化为一组新的正交基,使得数据在这组基下的方差最大。这样,我们可以只保留前k个主成分,即降到k维,来实现降维。例如,我们可以将一个具有1000个特征的数据集降维到50维,以减少计算的复杂度。
非线性降维则是指通过非线性变换将高维数据映射到低维空间。其中比较流行的非线性降维方法有t-SNE和LLE。t-SNE通过保持高维数据间的相对距离关系,将其映射到低维空间。而LLE则是通过保持高维数据之间的局部关系,在低维空间中重构数据。这些方法可以应用于图像和语音等领域,例如,我们可以将图像数据集降维到2维,以便可视化和分析。
总之,机器学习中的降维是一个非常重要的技术,可以帮助我们处理大量的高维数据,提高模型的训练效率和泛化能力。
阅读全文