用PyTorch复现PointNet++
时间: 2024-05-15 09:19:45 浏览: 67
以下是使用PyTorch复现PointNet的基本步骤:
1. 导入必要的库
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义PointNet的基本操作
```python
class TNet(nn.Module):
def __init__(self, k=3):
super(TNet, self).__init__()
self.conv1 = nn.Conv1d(k, 64, 1)
self.conv2 = nn.Conv1d(64, 128, 1)
self.conv3 = nn.Conv1d(128, 1024, 1)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, k*k)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
iden = torch.eye(x.size(1)).view(1, x.size(1)*x.size(1)).repeat(batch_size,1)
if x.is_cuda:
iden = iden.cuda()
x = x + iden
x = x.view(-1, x.size(1), x.size(1))
return x
```
3. 定义PointNet的分类模型
```python
class PointNetCls(nn.Module):
def __init__(self, k=2):
super(PointNetCls, self).__init__()
self.tnet1 = TNet(k=3)
self.conv1 = nn.Conv1d(3, 64, 1)
self.conv2 = nn.Conv1d(64, 64, 1)
self.tnet2 = TNet(k=64)
self.conv3 = nn.Conv1d(64, 128, 1)
self.conv4 = nn.Conv1d(128, 1024, 1)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, k)
def forward(self, x):
batch_size = x.size(0)
x = self.tnet1(x)
x = torch.bmm(x, x.transpose(2,1))
x = x.unsqueeze(1)
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = torch.max(x, 2, keepdim=True)[0]
x = x.repeat(1, 1, 1024)
x = torch.cat([x, self.tnet2(x)], 1)
x = F.relu(self.conv3(x))
x = self.conv4(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)
```
4. 定义损失函数和优化器
```python
model = PointNetCls()
criterion = nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```
5. 进行训练
```python
for epoch in range(50):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' %(epoch+1, running_loss/len(trainloader)))
```
6. 进行测试
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: %.2f %%' % (100 * correct / total))
```
这就是使用PyTorch复现PointNet的基本步骤。可以根据需要进行调整和改进,以获得更好的性能。
阅读全文