写一段Python代码: 使用正则表达式,筛选出指定txt文档中“VREF_BF_TRIM= 584.0MV”中间的数字,并另存为一个叫“OK”的txt文件中

时间: 2024-05-12 21:18:44 浏览: 12
```python import re # 打开原始文本文件 with open("original.txt", "r") as f: content = f.read() # 使用正则表达式匹配数字 match = re.search(r"VREF_BF_TRIM=\s*(\d+(\.\d+)?)MV", content) if match: # 提取匹配到的数字 num = match.group(1) # 将数字保存到新的文本文件中 with open("OK.txt", "w") as f: f.write(num) else: print("No match found.") ``` 其中,`original.txt`为指定的文本文件名,`VREF_BF_TRIM= 584.0MV`为待匹配的字符串,数字`584.0`将被提取并保存到新的文本文件`OK.txt`中。如果没有匹配到,则输出提示信息。
相关问题

Read Spd Begin... The memory on CH :1 are different! N: pre svc call fun = 0xc2000f04 -- pm-1 = 0, pm-2 = 29819750, pm-3 = 0 N: ddr fun = 0x0 -- pm = 0x29819750, pm2 = 0x0 N: parameter mcu: v0.5 Mcu Start Work ... get_clocks_value: scpi send command start: 0x10 scpi send command success get clocks = 533 MHZ pll_scp_num = 8 Lmu Freq = 1066Mhz ch = 0 parameter set ch closed! DIMM Don't Probed! ch = 1 the dimm info is from uboot... Dimm_Capacity = 8GB Mcu Channel 1 AES configuration begin... AES bypass end... TZC configuration begin... TZC bypass end... use_0x14 == 0xb0100 ctl_cfg_begin...... pi_cfg_begin...... phy_cfg_begin...... fast mode caslat = 15 wrlat = 14 tinit = 856000 r2r_diffcs_dly = 4 r2w_diffcs_dly = 5 w2r_diffcs_dly = 3 w2w_diffcs_dly = 7 r2w_samecs_dly = 4 w2r_samecs_dly = 0 r2r_samecs_dly = 0 w2w_samecs_dly = 0 ch 1 adapter_alg -- 0-0-0-0-0-0-0 rtt_wr = dis rtt_park = 80ohm ron = 34ohm val_cpudrv = 34 rtt_nom = 48ohm val_cpuodt = 48 vref_dev = 10 vrefsel = 0x45 dq_oe_timing = 0x42 rank_num_decode = 1 set phy_indep_init_mode set pi_dram_init_en set_pi_start & ctl_start...... wait init complete...... init complete done...... wait complete done...... rddqs_lat = 0x2 tdfi_phy_rdlat = 0x1f begin software ntp training... rank_num: 0 phy_write_path_lat_add =-1-1-1-1-1-1-1-1-1 phy_write_path_lat_add = 0 0 0 0 0 0 0 0 0 phy_write_path_lat_add = 1 1 1 1 1 1 1 1 1 phy_write_path_lat_add = 2 2 2 2 2 2 2 2 2 phy_write_path_lat_add = 3 3 3 3 3 3 3 3 3 phy_write_path_lat_add = 4 4 4 4 4 4 4 4 4 rank 0 wdqlvl! r2r_diffcs_dly = 4 r2w_diffcs_dly = 7 w2r_diffcs_dly = 4 w2w_diffcs_dly = 6 r2w_samecs_dly = 5 rank 0 ch 1 training fail

根据您提供的信息,似乎是内存训练过程中出现了错误。错误信息中指出了CH1内存信息不同的问题,以及训练过程中的一些参数和配置。其中,"Mcu Channel 1 AES configuration begin... AES bypass end... TZC configuration begin... TZC bypass end... use_0x14 == 0xb0100 ctl_cfg_begin"等信息表示内存控制器的一些配置和初始化过程。而"rank 0 wdqlvl! r2r_diffcs_dly = 4 r2w_diffcs_dly = 7 w2r_diffcs_dly = 4 w2w_diffcs_dly = 6 r2w_samecs_dly = 5 rank 0 ch 1 training fail"则表示在对CH1的rank0进行写数据时出现了训练失败的情况。 具体的原因可能需要进一步分析,可能与内存硬件、时序参数、内存控制器等方面有关。建议您尝试重新启动或重新插拔内存模块,并检查是否有硬件故障或不良连接的情况。同时,您也可以检查内存访问时序参数和内存控制器的配置是否正确。如果问题仍然存在,建议您查看更详细的错误信息或寻求专业的技术支持。

注释以下每一行代码#include "bflb_adc.h" #include "bflb_mtimer.h" #include "board.h" struct bflb_device_s *adc; #define TEST_ADC_CHANNELS 2 #define TEST_COUNT 10 struct bflb_adc_channel_s chan[] = { { .pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND }, { .pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3 }, }; int main(void) { board_init(); board_adc_gpio_init(); adc = bflb_device_get_by_name("adc"); /* adc clock = XCLK / 2 / 32 */ struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); for (uint32_t i = 0; i < TEST_COUNT; i++) { bflb_adc_start_conversion(adc); while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { bflb_mtimer_delay_ms(1); } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { struct bflb_adc_result_s result; uint32_t raw_data = bflb_adc_read_raw(adc); printf("raw data:%08x\r\n", raw_data); bflb_adc_parse_result(adc, &raw_data, &result, 1); printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); } bflb_adc_stop_conversion(adc); bflb_mtimer_delay_ms(100); } while (1) { } }

这段代码是使用芯片上的ADC模块读取外部电压信号,并将读取结果打印出来。具体注释如下: ``` #include "bflb_adc.h" // 包含 ADC 操作库的头文件 #include "bflb_mtimer.h" // 包含毫秒级延时库的头文件 #include "board.h" // 包含与硬件板子相关的头文件 struct bflb_device_s *adc; // 定义一个指向 ADC 设备的结构体指针 #define TEST_ADC_CHANNELS 2 // 定义测试的 ADC 通道数量为 2 #define TEST_COUNT 10 // 定义测试的次数为 10 struct bflb_adc_channel_s chan[] = { // 定义 ADC 通道的结构体数组 {.pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND}, {.pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3}, }; int main(void) { // 主函数 board_init(); // 初始化板子 board_adc_gpio_init(); // 初始化 ADC 相关的 GPIO adc = bflb_device_get_by_name("adc"); // 获取 ADC 设备的结构体指针 /* adc clock = XCLK / 2 / 32 */ // 设置 ADC 的时钟分频为 XCLK/2/32 struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); // 初始化 ADC bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); // 配置 ADC 通道 for (uint32_t i = 0; i < TEST_COUNT; i++) { // 循环读取 ADC 的值 bflb_adc_start_conversion(adc); // 启动 ADC 转换 while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { // 等待 ADC 转换完成 bflb_mtimer_delay_ms(1); // 延时 1 毫秒 } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { // 遍历每个 ADC 通道 struct bflb_adc_result_s result; // 定义保存 ADC 转换结果的结构体 uint32_t raw_data = bflb_adc_read_raw(adc); // 读取 ADC 原始数据 printf("raw data:%08x\r\n", raw_data); // 打印原始数据 bflb_adc_parse_result(adc, &raw_data, &result, 1); // 解析 ADC 转换结果 printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); // 打印解析后的数据 } bflb_adc_stop_conversion(adc); // 停止 ADC 转换 bflb_mtimer_delay_ms(100); // 延时 100 毫秒 } while (1) { // 循环等待 } } ```

相关推荐

#include "bflb_adc.h" #include "bflb_mtimer.h" #include "board.h" struct bflb_device_s adc; #define TEST_ADC_CHANNELS 2 #define TEST_COUNT 10 struct bflb_adc_channel_s chan[] = { { .pos_chan = ADC_CHANNEL_2, .neg_chan = ADC_CHANNEL_GND }, { .pos_chan = ADC_CHANNEL_GND, .neg_chan = ADC_CHANNEL_3 }, }; int main(void) { board_init(); board_adc_gpio_init(); adc = bflb_device_get_by_name("adc"); / adc clock = XCLK / 2 / 32 */ struct bflb_adc_config_s cfg; cfg.clk_div = ADC_CLK_DIV_32; cfg.scan_conv_mode = true; cfg.continuous_conv_mode = false; cfg.differential_mode = true; cfg.resolution = ADC_RESOLUTION_16B; cfg.vref = ADC_VREF_3P2V; bflb_adc_init(adc, &cfg); bflb_adc_channel_config(adc, chan, TEST_ADC_CHANNELS); for (uint32_t i = 0; i < TEST_COUNT; i++) { bflb_adc_start_conversion(adc); while (bflb_adc_get_count(adc) < TEST_ADC_CHANNELS) { bflb_mtimer_delay_ms(1); } for (size_t j = 0; j < TEST_ADC_CHANNELS; j++) { struct bflb_adc_result_s result; uint32_t raw_data = bflb_adc_read_raw(adc); printf("raw data:%08x\r\n", raw_data); bflb_adc_parse_result(adc, &raw_data, &result, 1); printf("pos chan %d,neg chan %d,%d mv \r\n", result.pos_chan, result.neg_chan, result.millivolt); } bflb_adc_stop_conversion(adc); bflb_mtimer_delay_ms(100); } while (1) { } }根据以上代码对bl618程序的编写对以下stm32中代码#include "stm32f10x.h" #include "delay.h" #include "FSR.h" #include "usart.h" #include "adc.h" #define PRESS_MIN 20 #define PRESS_MAX 6000 #define VOLTAGE_MIN 150 #define VOLTAGE_MAX 3300 u8 state = 0; u16 val = 0; u16 value_AD = 0; long PRESS_AO = 0; int VOLTAGE_AO = 0; long map(long x, long in_min, long in_max, long out_min, long out_max); int main(void) { delay_init(); NVIC_Configuration(); uart_init(9600); Adc_Init(); delay_ms(1000); printf("Test start\r\n"); while(1) { value_AD = Get_Adc_Average(1,10); VOLTAGE_AO = map(value_AD, 0, 4095, 0, 3300); if(VOLTAGE_AO < VOLTAGE_MIN) { PRESS_AO = 0; } else if(VOLTAGE_AO > VOLTAGE_MAX) { PRESS_AO = PRESS_MAX; } else { PRESS_AO = map(VOLTAGE_AO, VOLTAGE_MIN, VOLTAGE_MAX, PRESS_MIN, PRESS_MAX); } printf("ADÖµ = %d,µçѹ = %d mv,ѹÁ¦ = %ld g\r\n",value_AD,VOLTAGE_AO,PRESS_AO); delay_ms(500); } } long map(long x, long in_min, long in_max, long out_min, long out_max) { return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; }移植到bl618进行改写

static void check_efuse(void) { #if CONFIG_IDF_TARGET_ESP32 //Check if TP is burned into eFuse if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) { printf("eFuse Two Point: Supported\n"); } else { printf("eFuse Two Point: NOT supported\n"); } //Check Vref is burned into eFuse if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_VREF) == ESP_OK) { printf("eFuse Vref: Supported\n"); } else { printf("eFuse Vref: NOT supported\n"); } #elif CONFIG_IDF_TARGET_ESP32S2 if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) { printf("eFuse Two Point: Supported\n"); } else { printf("Cannot retrieve eFuse Two Point calibration values. Default calibration values will be used.\n"); } #else #error "This example is configured for ESP32/ESP32S2." #endif } static void print_char_val_type(esp_adc_cal_value_t val_type) { if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { printf("Characterized using Two Point Value\n"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { printf("Characterized using eFuse Vref\n"); } else { printf("Characterized using Default Vref\n"); } } void app_main(void) { //Check if Two Point or Vref are burned into eFuse check_efuse(); //Configure ADC if (unit == ADC_UNIT_1) { adc1_config_width(width); adc1_config_channel_atten(channel, atten); } else { adc2_config_channel_atten((adc2_channel_t)channel, atten); } //Characterize ADC adc_chars = calloc(1, sizeof(esp_adc_cal_characteristics_t)); esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, width, DEFAULT_VREF, adc_chars); print_char_val_type(val_type); //Continuously sample ADC1 while (1) { uint32_t adc_reading = 0; //Multisampling for (int i = 0; i < NO_OF_SAMPLES; i++) { if (unit == ADC_UNIT_1) { adc_reading += adc1_get_raw((adc1_channel_t)channel); } else { int raw; adc2_get_raw((adc2_channel_t)channel, width, &raw); adc_reading += raw; } } adc_reading /= NO_OF_SAMPLES; //Convert adc_reading to voltage in mV uint32_t voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_chars); printf("Raw: %d\tVoltage: %dmV\n", adc_reading, voltage); vTaskDelay(pdMS_TO_TICKS(1000)); } }

最新推荐

recommend-type

MCP47CXBXX中文数据手册(带标签).pdf

- 外部VREF引脚(缓冲或非缓冲) - 内部带隙(典型值为1.227V) • 输出增益选项: - 1x(单位增益) - 2x(在内部VDD不用作电压源时可用) • 上 电 复 位(Power-On Reset, POR) /欠 压 复 位 (Brown-Out...
recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不