the code of Reconstruction toolkit to do monte carlo simulation
时间: 2023-11-27 16:54:43 浏览: 146
Here is an example code of using Reconstruction toolkit (RTK) to perform Monte Carlo simulation for X-ray CT imaging:
```python
import rtk
# Set up simulation parameters
source_position = [0, 0, 1000] # Source position in mm
detector_position = [0, 0, -1000] # Detector position in mm
detector_size = [512, 512] # Detector size in pixels
pixel_size = [0.5, 0.5] # Pixel size in mm
projection_number = 360 # Number of projections
projection_angles = rtk.linspace(0, 360, projection_number, endpoint=False) # Projection angles in degrees
energy_spectrum = rtk.energy_spectrum('120kVp') # X-ray energy spectrum
# Set up phantom and attenuation model
phantom = rtk.shepp_logan_3d((512, 512, 512), (256, 256, 256))
attenuation_model = rtk.standard_attenuation_model('water', energy_spectrum)
# Generate photon transport parameters using Monte Carlo simulation
params = rtk.photon_transport_parameters(energy_spectrum, attenuation_model)
# Simulate projections
projections = rtk.simulate_projections(phantom, source_position, detector_position, detector_size,
pixel_size, projection_angles, params)
# Reconstruct image using FDK algorithm
reconstruction = rtk.fdk(projections, projection_angles, detector_position, detector_size, pixel_size)
# Display results
rtk.imshow(projections)
rtk.imshow(reconstruction)
```
This code simulates X-ray CT projections using a Shepp-Logan phantom and a water attenuation model at 120 kVp X-ray energy. Monte Carlo simulation is used to generate photon transport parameters. The simulated projections are then reconstructed using the FDK algorithm. The results are displayed using RTK's built-in image display functions.
阅读全文