matlab19张碎纸片的拼接复原代码
时间: 2023-10-16 22:18:15 浏览: 132
这里提供一种基于 Matlab 的碎纸片拼接复原代码:
首先,读取碎片图片,将其转换为灰度图像并进行二值化处理:
```matlab
clear all;
close all;
clc;
% 读取碎片
for i = 1:19
filename = strcat('puzzle',num2str(i),'.jpg');
img{i} = imread(filename);
gray_img{i} = rgb2gray(img{i});
bw_img{i} = imbinarize(gray_img{i},0.5);
end
```
然后,根据二值化后的图像进行分割,得到每个碎片的轮廓:
```matlab
% 分割碎片
for i = 1:19
% 获取轮廓
[~,contour{i}] = bwboundaries(bw_img{i},'noholes');
end
```
接下来,通过计算每对碎片的相似度,构建碎片之间的相似度矩阵:
```matlab
% 计算相似度
sim_matrix = zeros(19,19);
for i = 1:19
for j = i+1:19
sim_matrix(i,j) = cal_similarity(contour{i},contour{j});
sim_matrix(j,i) = sim_matrix(i,j);
end
end
```
其中,`cal_similarity` 函数用于计算两个碎片的相似度,这里采用两个轮廓之间的欧氏距离作为相似度度量:
```matlab
function sim = cal_similarity(contour1,contour2)
% 计算欧氏距离
[idx1,idx2] = match_contours(contour1,contour2);
sim = sqrt(sum((contour1{idx1} - contour2{idx2}).^2,2));
end
function [idx1,idx2] = match_contours(contour1,contour2)
% 匹配轮廓
n1 = length(contour1);
n2 = length(contour2);
dist_matrix = zeros(n1,n2);
for i = 1:n1
for j = 1:n2
dist_matrix(i,j) = norm(contour1{i}-contour2{j});
end
end
[idx1,idx2] = find(dist_matrix==min(dist_matrix(:)));
end
```
最后,采用遗传算法进行碎片的拼接,得到复原后的图片:
```matlab
% 遗传算法拼接
options = gaoptimset('PopulationSize',100,'Generations',500,'StallGenLimit',50);
[x,fval] = ga(@(x)fitness_function(x,sim_matrix),19,[],[],[],[],ones(1,19),19*ones(1,19),[],options);
% 绘制拼接后的图片
result_img = zeros(size(img{1}));
for i = 1:19
x1 = round(x(i));
y1 = round(x(i+19));
result_img(x1:x1+size(img{i},1)-1,y1:y1+size(img{i},2)-1,:) = img{i};
end
figure;
imshow(result_img/255);
```
其中,`fitness_function` 函数用于计算遗传算法的适应度,这里采用了碎片之间的相似度作为适应度度量:
```matlab
function f = fitness_function(x,sim_matrix)
% 计算适应度
f = 0;
for i = 1:length(x)-1
f = f + sim_matrix(x(i),x(i+1));
end
end
```
完整代码如下:
阅读全文