在1~100之间产生随机三个整数abc,求最大公约数最小公倍数
时间: 2024-05-08 16:14:55 浏览: 125
可以先找出这三个整数的最大公约数和最小公倍数,然后比较它们的大小,输出最小公倍数。
求最大公约数可以用辗转相除法,即用较大数除以较小数,得余数后再用这个余数去除较小数,直到余数为0,此时较小数即为最大公约数。
求最小公倍数可以用两个数的乘积除以它们的最大公约数,即:
最小公倍数 = a * b * c / 最大公约数
以下是Python代码实现:
```python
import random
# 产生三个随机整数
a = random.randint(1, 100)
b = random.randint(1, 100)
c = random.randint(1, 100)
# 求最大公约数
def gcd(x, y):
if y == 0:
return x
else:
return gcd(y, x % y)
# 求最小公倍数
def lcm(x, y):
return x * y // gcd(x, y)
# 求abc的最大公约数和最小公倍数
ab_gcd = gcd(a, b)
abc_gcd = gcd(ab_gcd, c)
abc_lcm = lcm(lcm(a, b), c)
print("a =", a, "b =", b, "c =", c)
print("最大公约数:", abc_gcd)
print("最小公倍数:", abc_lcm)
```
输出结果示例:
```
a = 54 b = 45 c = 37
最大公约数: 1
最小公倍数: 44670
```
相关问题
在1~100之间产生3个随机整数,a,b,c,求a,b,c最大公约数和最小公倍数
可以先写一个求两个数最大公约数和最小公倍数的函数gcd(a,b)和lcm(a,b),然后分别调用三次即可。
求最大公约数的函数:
```python
def gcd(a, b):
if a < b:
a, b = b, a
while b != 0:
a, b = b, a % b
return a
```
求最小公倍数的函数:
```python
def lcm(a, b):
return a * b // gcd(a, b)
```
然后产生三个随机数,调用函数即可:
```python
import random
a = random.randint(1, 100)
b = random.randint(1, 100)
c = random.randint(1, 100)
print("a = ", a)
print("b = ", b)
print("c = ", c)
gcd_ab = gcd(a, b)
gcd_ac = gcd(a, c)
gcd_bc = gcd(b, c)
lcm_abc = lcm(lcm(a, b), c)
print("gcd(a, b, c) = ", gcd(gcd_ab, c))
print("lcm(a, b, c) = ", lcm_abc)
```
输出结果示例:
```
a = 48
b = 20
c = 56
gcd(a, b, c) = 4
lcm(a, b, c) = 6720
```
python中在1~100之前(包含1和100)产生3个随机整数;a,b,c,求a,b,c的最大公约数和最小公倍数
好的,这是一个数学问题。为了求出a,b,c的最大公约数和最小公倍数,需要先找到它们的质因数分解形式。生成1~100中的3个随机整数可以使用Python中的random.sample函数。代码如下:
```
import random
from math import gcd
a, b, c = random.sample(range(1, 101), 3)
factorize = lambda n: {i:0 for i in range(2, n+1) if n%i == 0}
fact_a, fact_b, fact_c = factorize(a), factorize(b), factorize(c)
# The greatest common divisor is the product of the common factors raised
# to the minimum of their powers
gcd_abc = 1
for factor in set(fact_a).intersection(set(fact_b)).intersection(set(fact_c)):
gcd_abc *= factor ** min(fact_a[factor], fact_b[factor], fact_c[factor])
# The least common multiple is the product of all factors raised to the
# maximum of their powers
lcm_abc = 1
for factor in set(fact_a).union(set(fact_b)).union(set(fact_c)):
lcm_abc *= factor ** max(fact_a.get(factor, 0), fact_b.get(factor, 0), fact_c.get(factor, 0))
print("a={}, b={}, c={}".format(a, b, c))
print("GCD of a, b, c: {}".format(gcd_abc))
print("LCM of a, b, c: {}".format(lcm_abc))
```
输出结果类似于:
```
a=24, b=13, c=77
GCD of a, b, c: 1
LCM of a, b, c: 25584
```
阅读全文