运用Pysyft框架syft版本0.2.4,torchvision版本0.5.0,torch版本1.4.0,以https://raw.githubusercontent.com/mwaskom/seaborn-data/master/diamonds.csv作为数据集,编写一个联邦学习差分隐私保护的线性回归模型
时间: 2023-06-23 13:08:43 浏览: 268
首先,我们需要安装Pysyft框架,可以通过以下代码进行安装:
```
!pip install syft==0.2.4
```
然后,我们需要导入所需的库和模块:
```
import torch
import syft as sy
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from torch import nn, optim
from torch.utils.data import TensorDataset, DataLoader
```
接下来,我们需要加载数据集并将其分为两个子集:
```
data = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/diamonds.csv')
features = data.drop('price', axis=1)
target = data.price
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=123)
```
然后,我们需要将数据转换为PyTorch张量并将其发送给不同的工作机器:
```
hook = sy.TorchHook(torch)
alice = sy.VirtualWorker(hook, id="alice")
bob = sy.VirtualWorker(hook, id="bob")
X_train_alice = torch.tensor(np.array(X_train.loc[X_train.cut == "Ideal"]))
y_train_alice = torch.tensor(np.array(y_train.loc[X_train.cut == "Ideal"]))
X_train_bob = torch.tensor(np.array(X_train.loc[X_train.cut != "Ideal"]))
y_train_bob = torch.tensor(np.array(y_train.loc[X_train.cut != "Ideal"]))
X_test = torch.tensor(np.array(X_test))
y_test = torch.tensor(np.array(y_test))
X_train_alice = X_train_alice.send(alice)
y_train_alice = y_train_alice.send(alice)
X_train_bob = X_train_bob.send(bob)
y_train_bob = y_train_bob.send(bob)
X_test = X_test.send(bob)
y_test = y_test.send(bob)
```
接下来,我们需要定义模型、损失函数和优化器:
```
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(8, 1)
def forward(self, x):
out = self.linear(x)
return out
model_alice = LinearRegression()
model_bob = LinearRegression()
criterion = nn.MSELoss()
optimizer_alice = optim.SGD(model_alice.parameters(), lr=0.01)
optimizer_bob = optim.SGD(model_bob.parameters(), lr=0.01)
```
然后,我们需要定义一个函数来训练模型,并使用差分隐私技术保护模型训练中的隐私:
```
def train(model, optimizer, train_data, train_labels, epochs, batch_size, noise_multiplier):
for epoch in range(epochs):
for i in range(0, len(train_data), batch_size):
optimizer.zero_grad()
batch_data = train_data[i:i+batch_size].float()
batch_labels = train_labels[i:i+batch_size].float()
preds = model(batch_data)
loss = criterion(preds, batch_labels)
loss.backward()
# Add noise to the gradients
for param in model.parameters():
noise = torch.Tensor(param.grad.shape).normal_(0, noise_multiplier)
param.grad += noise
optimizer.step()
print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}')
```
最后,我们需要训练模型并评估其性能:
```
epochs = 10
batch_size = 32
noise_multiplier = 0.1
train(model_alice, optimizer_alice, X_train_alice, y_train_alice, epochs, batch_size, noise_multiplier)
train(model_bob, optimizer_bob, X_train_bob, y_train_bob, epochs, batch_size, noise_multiplier)
model_alice.move(bob)
model_bob.move(bob)
preds_alice = model_alice(X_test.float())
preds_bob = model_bob(X_test.float())
preds = (preds_alice + preds_bob) / 2
loss = criterion(preds, y_test.float())
print(f'Test Loss: {loss.item()}')
```
这就是一个使用Pysyft框架实现联邦学习差分隐私保护的线性回归模型的完整代码。
阅读全文