读取1*121维csv文件用dcgan生成一维数据代码
时间: 2023-09-22 08:08:04 浏览: 92
读取CSV文件
以下是一个使用DCGAN生成一维数据的示例代码,假设csv文件中只有一列数据,共121行:
```python
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
# 读取csv文件
data = pd.read_csv("data.csv", header=None)
x_train = data.values
# 数据预处理
x_train = x_train.astype('float32')
x_train = (x_train - 127.5) / 127.5 # 归一化到[-1, 1]之间
# 定义生成器模型
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(64, input_shape=(100,), use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(128, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(121, activation='tanh'))
return model
# 定义判别器模型
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(128, input_shape=(121,)))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(64))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(1))
return model
# 定义损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 定义判别器损失函数
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
# 定义生成器损失函数
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
# 定义优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义训练函数
@tf.function
def train_step(images):
noise = tf.random.normal([batch_size, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_data = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_data, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 定义训练参数
noise_dim = 100
num_examples_to_generate = 1
generator = make_generator_model()
discriminator = make_discriminator_model()
EPOCHS = 1000
batch_size = 1
# 开始训练
for epoch in range(EPOCHS):
for i in range(0, len(x_train), batch_size):
images = x_train[i:i+batch_size]
train_step(images)
# 每个epoch生成一组样本数据
if epoch % 100 == 0:
print("Epoch:", epoch)
noise = tf.random.normal([num_examples_to_generate, noise_dim])
generated_data = generator(noise, training=False)
generated_data = (generated_data * 127.5 + 127.5).numpy() # 反归一化
print("Generated data:", generated_data)
```
需要注意的是,这里使用的是DCGAN,生成器和判别器都是基于全连接层的模型,因此可能需要更多的训练时间才能生成较为真实的数据。如果需要生成更加复杂的数据,可以考虑使用其他类型的GAN模型。
阅读全文