noise *= np.where(p < 1 / (1 + np.exp(lambda_min)), 1, 0)

时间: 2023-10-14 22:05:06 浏览: 37
这行代码使用了 NumPy 的 `np.where()` 函数进行条件赋值。具体来说,它会将噪声矩阵 `noise` 中所有满足条件 `p < 1 / (1 + np.exp(lambda_min))` 的元素设置为 1,不满足条件的元素设置为 0。 这里的 `p` 是一个概率矩阵,而 `1 / (1 + np.exp(lambda_min))` 是一个标量,表示一个逻辑斯蒂回归模型的阈值。在这个模型中,对于所有满足 `p < 1 / (1 + np.exp(lambda_min))` 的位置,我们认为它们的概率值为 1;否则,我们认为它们的概率值为 0。 需要注意的是,`np.where()` 函数的第二个参数是一个标量或与第一个参数相同形状的数组。在这里,我们使用一个形状与 `noise` 相同的数组,其中所有满足条件的元素都被设置为 1,不满足条件的元素都被设置为 0。这样,`np.where()` 函数就会根据条件选择 `1` 或 `0` 并将其赋值给 `noise` 矩阵中相应的位置。 需要注意的是,这行代码中的 `*=` 运算符将条件赋值的结果乘以原始的噪声矩阵。也就是说,所有满足条件的位置在噪声矩阵中的值都会被保留,不满足条件的位置在噪声矩阵中的值都会被清零。
相关问题

下面pytorch代码转化为paddlepaddle2.2.2代码: import torch import torch.distributions as tdist def random_noise_levels(): """Generates random noise levels from a log-log linear distribution.""" log_min_shot_noise = np.log(0.0001) log_max_shot_noise = np.log(0.012) log_shot_noise = torch.FloatTensor(1).uniform_(log_min_shot_noise, log_max_shot_noise) shot_noise = torch.exp(log_shot_noise) line = lambda x: 2.18 * x + 1.20 n = tdist.Normal(loc=torch.tensor([0.0]), scale=torch.tensor([0.26])) log_read_noise = line(log_shot_noise) + n.sample() read_noise = torch.exp(log_read_noise) return shot_noise, read_noise def add_noise(image, shot_noise=0.01, read_noise=0.0005): """Adds random shot (proportional to image) and read (independent) noise.""" image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format variance = image * shot_noise + read_noise n = tdist.Normal(loc=torch.zeros_like(variance), scale=torch.sqrt(variance)) noise = n.sample() out = image + noise out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format return out

以下是将该代码转化为PaddlePaddle2.2.2的代码: ``` import paddle import paddle.distribution as pdist import numpy as np def random_noise_levels(): """Generates random noise levels from a log-log linear distribution.""" log_min_shot_noise = np.log(0.0001) log_max_shot_noise = np.log(0.012) log_shot_noise = paddle.uniform(shape=[1], min=log_min_shot_noise, max=log_max_shot_noise) shot_noise = paddle.exp(log_shot_noise) line = lambda x: 2.18 * x + 1.20 n = pdist.Normal(loc=paddle.zeros([1]), scale=paddle.ones([1]) * 0.26) log_read_noise = line(log_shot_noise) + n.sample() read_noise = paddle.exp(log_read_noise) return shot_noise, read_noise def add_noise(image, shot_noise=0.01, read_noise=0.0005): """Adds random shot (proportional to image) and read (independent) noise.""" image = image.permute([1, 2, 0]) # Permute the image tensor to HxWxC format from CxHxW format variance = image * shot_noise + read_noise n = pdist.Normal(loc=paddle.zeros_like(variance), scale=paddle.sqrt(variance)) noise = n.sample() out = image + noise out = out.permute([2, 0, 1]) # Re-Permute the tensor back to CxHxW format return out ``` 请注意,PaddlePaddle的分布API(`paddle.distribution`)与PyTorch的分布API(`torch.distributions`)略有不同,需要相应地更改代码。此外,PaddlePaddle的张量API(如`paddle.exp`)与PyTorch的张量API(如`torch.exp`)也略有不同,需要相应地更改代码。

翻译代码: best_net = None for gen in range(self.generations): parents = [] for i in range(self.pop_size): idx1 = np.random.choice(range(self.pop_size), size=self.pop_size // 2, replace=False) idx2 = np.random.choice(range(self.pop_size), size=self.pop_size // 2, replace=False) parent1 = self.pop[max(idx1, key=lambda i: fitness_scores[i])] parent2 = self.pop[max(idx2, key=lambda i: fitness_scores[i])] parents.append((parent1, parent2))

翻译如下: ``` best_net = None for gen in range(self.generations): parents = [] for i in range(self.pop_size): idx1 = np.random.choice(range(self.pop_size), size=self.pop_size // 2, replace=False) idx2 = np.random.choice(range(self.pop_size), size=self.pop_size // 2, replace=False) parent1 = self.pop[max(idx1, key=lambda i: fitness_scores[i])] parent2 = self.pop[max(idx2, key=lambda i: fitness_scores[i])] parents.append((parent1, parent2)) ``` 意思是: ``` best_net = None # 初始化最好的神经网络 for gen in range(self.generations): # 进行多少代繁殖 parents = [] # 初始化父母列表 for i in range(self.pop_size): # 对于每一个个体 idx1 = np.random.choice(range(self.pop_size), size=self.pop_size // 2, replace=False) # 随机选择一组父母 idx2 = np.random.choice(range(self.pop_size), size=self.pop_size // 2, replace=False) # 随机选择另一组父母 parent1 = self.pop[max(idx1, key=lambda i: fitness_scores[i])] # 根据适应度选出第一个父母 parent2 = self.pop[max(idx2, key=lambda i: fitness_scores[i])] # 根据适应度选出第二个父母 parents.append((parent1, parent2)) # 将这两个父母加入到父母列表中 ``` 其中 `self.pop` 是神经网络的种群,`fitness_scores` 是每个神经网络的适应度得分。该段代码是在进行遗传算法的繁殖过程中选出父母,用于下一步的交叉和变异操作。

相关推荐

import numpy as np import matplotlib.pyplot as plt import sympy from scipy.interpolate import interp1d gamma = 1.2 R = 8.314 T0 = 500 Q = 50 * R * T0 a0 = np.sqrt(gamma * R * T0) M0 = 6.216 P_P0 = sympy.symbols('P_P0') num = 81 x0 = np.linspace(0,1,num) t_t0 = np.linspace(0,15,num) x = x0[1:] T_T0 = t_t0[1:] h0 = [] h1 = []#创建拉姆达为1的空数组 r = [] t = [] c = [] s = [] i = 0 for V_V0 in x: n1 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 0 * Q / a0 ** 2,P_P0)#lamuda=0的Hugoniot曲线方程 n2 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 1 * Q / a0 ** 2,P_P0)#lamuda=1的Hugoniot曲线方程 n3 = sympy.solve(-1 * P_P0 + 1 - gamma * M0 ** 2 * (V_V0 - 1),P_P0)#Reyleigh曲线方程 n4 = 12.014556 / V_V0#等温线 n5 = sympy.solve((P_P0 - 1 / (gamma+1) )* (V_V0-gamma / (gamma + 1)) - gamma / ((gamma + 1) ** 2),P_P0)#声速线 n6 = 10.6677 / np.power(V_V0,1.2)#等熵线 h0.append(n1) h1.append(n2) r.append(n3) t.append(n4) c.append(n5) s.append(n6) i = i+1 h0 = np.array(h0) h1 = np.array(h1) r = np.array(r) t = np.array(t) c = np.array(c) s = np.array(s) plt.plot(x,r,label='Rayleigh') plt.plot(x,t,color='purple',label='isothermal') plt.plot(x,s,color='skyblue',label='isentropic') a = np.where(h0 < 0) b = np.where(c < 0) h0 = np.delete(h0,np.where(h0 < 0)[0],axis = 0)#去除解小于0的值 h1 = np.delete(h1,np.where(h1 < 0)[0],axis = 0)#去除解小于0的值 c = np.delete(c,np.where(c < 0)[0],axis = 0)#去除解小于0的值 x0 = np.delete(x,a,axis = 0)#对应去除x轴上错误值的坐标 x1 = np.delete(x,b,axis = 0) plt.plot(x0,h0,label='Hugoniot(lambda=0)') plt.plot(x0,h1,label='Hugoniot(lambda=1)') plt.plot(x1,c,color='yellow',label='soniclocus') plt.ylim((0,50)) plt.legend() # 显示图例 plt.xlabel('V/V0') plt.ylabel('P/P0') f1 = interp1d(x1, c.T, kind='cubic') f2 = interp1d(x,r.T,kind='cubic') f3 = interp1d(x, t.T, kind='cubic') epsilon = 0.0001 x0 = 0.56 y0 = f1(x0) - f2(x0) while abs(y0) > epsilon: df = (f1(x0 + epsilon) - f2(x0 + epsilon) - y0) / epsilon x0 -= y0 / df y0 = f1(x0) - f2(x0) plt.scatter(x0, y0, 50, color ='red') plt.show()

优化:import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import pywt import matplotlib.pyplot as plt def wiener_filter(x, fs, cutoff): # 维纳滤波函数 N = len(x) freqs, Pxx = signal.periodogram(x, fs=fs) H = np.zeros(N) H[freqs <= cutoff] = 1 Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6) H_smooth = np.maximum(H, np.max(H) * 1e-6) G = H_smooth / (H_smooth + 1 / Pxx_smooth) y = np.real(np.fft.ifft(np.fft.fft(x) * G)) return y def kalman_filter(x): # 卡尔曼滤波函数 Q = np.diag([0.01, 1]) R = np.diag([1, 0.1]) A = np.array([[1, 1], [0, 1]]) H = np.array([[1, 0], [0, 1]]) x_hat = np.zeros((2, len(x))) P = np.zeros((2, 2, len(x))) x_hat[:, 0] = np.array([x[0], 0]) P[:, :, 0] = np.eye(2) for k in range(1, len(x)): x_hat[:, k] = np.dot(A, x_hat[:, k-1]) P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R)) x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k])) P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k]) y = x_hat[0, :] return y # 读取含有噪声的语音信号 rate, data = wavfile.read("shengyin.wav") data = data.astype(float) / 32767.0 # 维纳滤波 y_wiener = wiener_filter(data, fs=rate, cutoff=1000) # 卡尔曼滤波 y_kalman = kalman_filter(data) # 保存滤波后的信号到文件中 wavfile.write("wiener_filtered.wav", rate, np.int32(y_wiener * 32767.0)) wavfile.write("kalman_filtered.wav", rate, np.int32(y_kalman * 32767.0))

将这个代码修改为自适应序列采样的插值方法:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if __name__ == '__main__': snum = 12 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -4 xe = 4 x1 = np.linspace(xs, xe, snum) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()

import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.weights_ih = np.random.randn(hidden_size, input_size) self.bias_ih = np.random.randn(hidden_size, 1) self.weights_ho = np.random.randn(output_size, hidden_size) self.bias_ho = np.random.randn(output_size, 1) # 定义激活函数 self.activation = lambda x: 1 / (1 + np.exp(-x)) self.derivative = lambda x: x * (1 - x) def forward(self, inputs): # 计算隐藏层的输出 hidden = self.activation(np.dot(self.weights_ih, inputs) + self.bias_ih) # 计算输出层的输出 output = self.activation(np.dot(self.weights_ho, hidden) + self.bias_ho) return output def backward(self, inputs, targets, output): # 计算输出层的误差 output_error = targets - output output_delta = output_error * self.derivative(output) # 计算隐藏层的误差 hidden_error = np.dot(self.weights_ho.T, output_delta) hidden_delta = hidden_error * self.derivative(hidden) # 更新权重和偏置 self.weights_ho += np.dot(output_delta, hidden.T) self.bias_ho += output_delta self.weights_ih += np.dot(hidden_delta, inputs.T) self.bias_ih += hidden_delta def train(self, inputs, targets, epochs): for i in range(epochs): for j in range(len(inputs)): # 前向传播 output = self.forward(inputs[j].reshape(-1, 1)) # 反向传播 self.backward(inputs[j].reshape(-1, 1), targets[j].reshape(-1, 1), output)

最新推荐

recommend-type

基于Yolov5的旋转检测

旋转检测 要求 torch==1.6 shapely==1.7.1 opencv==4.2.0.34
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。