C()函数将数值型变量转化为分类变量
时间: 2024-06-05 08:10:38 浏览: 171
C()函数实际上是将一个对象强制转化为指定的类别。如果你将一个数值型变量传递给C()函数,它会将其转化为字符型变量。这与将数值型变量转化为分类变量的概念不同。
如果你想将数值型变量转化为分类变量,可以使用cut()函数或者factor()函数。cut()函数可以将一个连续的数值型变量划分为若干个离散的区间,而factor()函数可以将一个离散的数值型变量转化为一个分类变量。
相关问题
(1) 使用 pandas 读入数据 titanic.csv,命名为 origin,并查看数据维度与前 10 行。 (2) 处理缺失值: (a) 查看哪些列存在缺失值。 (b) 发现原始数据中存在年龄为空值的记录,可能是无法识别乘客年龄的缘故,因此去除 年龄为空的记录。(满足 age 为空的一行数据全部丢弃)并再次查看哪些列存在缺失 值。保存上述数据清洗后的数据至“titanic2_cleaned.csv”文件中,随后的题目都在 “titanic2_cleaned.csv”上进行。 1 (3) 筛选列名为 pclass,sex,age,fare,who,adult_male 的列,构成模型数据,命名为 titanic_model。 (4) 使用 patsy.dmatrices() 函数,建立变量 fare 对变量 age 的线性回归,为该线性模型产生设 计矩阵;根据最小二乘法计算回归拟合系数。 (5) 使用 Pandas.get_dummies() 将分类变量 sex、who 转化为虚拟变量,利用 patsy 将数值列 pclass 转化为分类变量。 (6) 使用 statsmodels 包,基于 statsmodels.api(数组接入),利用最小二乘法建立 fare 对 pclass、 sex、age、who 的线性回归模型,(pclass、age 为数值型变量,sex、who 为虚变量),并添 加截距项,展示拟合系数。
好的,以下是针对你的问题的回答:
(1) 使用 pandas 读入数据 titanic.csv,命名为 origin,并查看数据维度与前 10 行。
```python
import pandas as pd
origin = pd.read_csv('titanic.csv')
print("数据维度为:", origin.shape)
print("前10行数据为:\n", origin.head(10))
```
(2) 处理缺失值:
(a) 查看哪些列存在缺失值。
```python
print(origin.isnull().sum())
```
(b) 发现原始数据中存在年龄为空值的记录,可能是无法识别乘客年龄的缘故,因此去除年龄为空的记录。(满足 age 为空的一行数据全部丢弃)并再次查看哪些列存在缺失值。保存上述数据清洗后的数据至“titanic2_cleaned.csv”文件中,随后的题目都在“titanic2_cleaned.csv”上进行。
```python
# 去除 age 为空的行
titanic2 = origin.dropna(subset=['age'])
# 再次查看哪些列存在缺失值
print(titanic2.isnull().sum())
# 保存数据到 titanic2_cleaned.csv 文件中
titanic2.to_csv('titanic2_cleaned.csv', index=False)
```
(3) 筛选列名为 pclass,sex,age,fare,who,adult_male 的列,构成模型数据,命名为 titanic_model。
```python
titanic_model = titanic2[['pclass', 'sex', 'age', 'fare', 'who', 'adult_male']]
```
(4) 使用 patsy.dmatrices() 函数,建立变量 fare 对变量 age 的线性回归,为该线性模型产生设计矩阵;根据最小二乘法计算回归拟合系数。
```python
import patsy
import numpy as np
# 构建设计矩阵
y, X = patsy.dmatrices('fare ~ age', data=titanic_model, return_type='dataframe')
# 根据最小二乘法计算回归拟合系数
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X, y)
print("回归系数为:", lr.coef_)
```
(5) 使用 Pandas.get_dummies() 将分类变量 sex、who 转化为虚拟变量,利用 patsy 将数值列 pclass 转化为分类变量。
```python
# 将 sex、who 转化为虚拟变量
titanic_model = pd.get_dummies(titanic_model, columns=['sex', 'who'])
# 将 pclass 转化为分类变量
titanic_model['pclass'] = titanic_model['pclass'].astype('category')
titanic_model = patsy.dmatrix('pclass + age + fare + sex_female + sex_male + who_child + who_man + who_woman', data=titanic_model, return_type='dataframe')
```
(6) 使用 statsmodels 包,基于 statsmodels.api(数组接入),利用最小二乘法建立 fare 对 pclass、sex、age、who 的线性回归模型,(pclass、age 为数值型变量,sex、who 为虚变量),并添加截距项,展示拟合系数。
```python
import statsmodels.api as sm
# 为矩阵添加截距项
X = sm.add_constant(titanic_model)
# 建立线性回归模型
model = sm.OLS(y, X).fit()
# 展示拟合系数
print(model.params)
```
r语言中,对于分类变量,转化为因子变量和转化为虚拟变量有区别吗
### 回答1:
是的,分类变量转化为因子变量和转化为虚拟变量是有区别的。
在 R 语言中,将分类变量转化为因子变量是将其映射为一组数值型的水平变量,每个水平对应一个数值。这些数值是因子变量的水平,通常被称为因子水平,每个因子水平都是唯一的。转化为因子变量的分类变量的数据类型是整数型。
将分类变量转化为虚拟变量是将其映射为一组二元变量,其中每个二元变量只有 0 或 1 两种取值,用来表示每个分类变量的不同水平是否出现。转化为虚拟变量的分类变量的数据类型是布尔型。
在统计模型中,因子变量和虚拟变量都可以用来表示分类变量。但是,在许多情况下,使用虚拟变量比使用因子变量更为方便。例如,在使用多元逻辑回归模型时,使用虚拟变量可以很容易地表示分类变量的多个水平,而不需要指定一个水平作为基准水平。
### 回答2:
在R语言中,对于分类变量,转化为因子变量和转化为虚拟变量确实有一些区别。
首先,将分类变量转化为因子变量是将原始变量转化为一组有限几个离散取值的有序集合。R语言中的factor函数可以用来将字符型或数值型的变量转化为因子变量。转化后,R语言会为每个不同的取值创建一个水平(level),并将原始数据中的取值映射到相应的水平上。这样做的好处是可以方便地对因子变量进行分析、汇总和可视化。
而将分类变量转化为虚拟变量(也称为哑变量)则是将原始变量拆分为多个二元变量,每个变量代表原始变量的一个取值。R语言中的model.matrix函数可以通过将因子变量作为输入,自动创建虚拟变量。转化后,每个虚拟变量只能取0或1的取值,表示原始变量的一个特定取值是否存在。使用虚拟变量可以方便地进行回归分析和建模,也有助于解决一些算法对于离散变量处理的问题。
总结起来,将分类变量转化为因子变量能更好地表达原始数据的特点和结构,而将分类变量转化为虚拟变量则更适合于进行一些特定的分析和建模任务。选择如何转化取决于具体的分析目的和需求。
### 回答3:
在R语言中,对于分类变量,转化为因子变量和转化为虚拟变量是有区别的。
将分类变量转化为因子变量是指将分类变量转化为R语言中的因子类型。因子变量是一种特殊的数据类型,用来表示具有有限个离散取值的变量。转化为因子变量后,R语言会自动为每个不同的取值分配一个唯一的编号,以便进行分类变量的分析和建模。因子变量可以将分类变量按照一定的顺序排序,并且可以通过设定因子水平来控制统计分析和绘图的顺序。
而将分类变量转化为虚拟变量则是将每个不同的取值转化为一个二进制的虚拟变量。转化为虚拟变量后,每个不同的取值会被转化为多个虚拟变量,其中只有一个变量的取值为1,其他变量的取值为0。转化为虚拟变量后,可以将其作为自变量用于回归分析等建模任务。虚拟变量可以用于表示分类变量中的不同取值之间的独立性和差异性。
因此,尽管两种转化方法都是将分类变量转化为特定的数据类型,但因子变量主要用于分类和排序,而虚拟变量主要用于表示分类变量中的不同取值之间的差异性。在具体应用时,需要根据分析的需求和建模的目的选择适合的转化方法。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044937.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)