慢特征分析matlab代码
时间: 2023-07-02 07:23:08 浏览: 469
matlb 慢特征分析
4星 · 用户满意度95%
以下是一个简单的慢特征分析(Slow Feature Analysis, SFA)的Matlab代码示例:
```matlab
% 定义输入向量
input = randn(100, 10);
% 定义SFA参数
num_features = 5; % 特征数量
tau = 10; % 时间常数
% 计算输入向量的时间导数
input_diff = diff(input);
% 初始化SFA权重矩阵
W = randn(size(input, 2), num_features);
% 迭代计算SFA权重矩阵
for i = 1:1000
% 计算慢特征
features = input_diff * W;
features = tanh(features);
% 计算特征的时间导数
feature_diff = diff(features);
% 计算权重更新
dW = input_diff' * feature_diff;
dW = dW / norm(dW);
% 更新权重矩阵
W = W + tau * dW;
W = W / norm(W);
end
% 计算最终的特征向量
features = input_diff * W;
features = tanh(features);
```
代码中的`input`是一个100行10列的随机矩阵,表示输入向量。`num_features`表示要计算的特征数量,`tau`表示时间常数。代码通过计算输入向量的时间导数,初始化SFA权重矩阵,并迭代计算权重矩阵,最终得到特征向量`features`。在计算慢特征和特征的时间导数时,使用了tanh函数对特征进行非线性变换。
阅读全文