能否写出一个利用深度学习实现车牌识别的pytorch代码
时间: 2023-12-26 10:06:13 浏览: 70
当然可以!以下是一个简单的基于PyTorch实现的车牌识别代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from PIL import Image
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)), # 图片大小调整
transforms.ToTensor(), # 转换为张量
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 归一化
])
# 数据加载
train_data = ImageFolder(root='./data/train', transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
# 定义模型
class LicensePlateRecognition(nn.Module):
def __init__(self):
super(LicensePlateRecognition, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.fc1 = nn.Linear(64 * 56 * 56, 128)
self.fc2 = nn.Linear(128, 2)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 64 * 56 * 56)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
model = LicensePlateRecognition()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
# 测试模型
test_image = Image.open('./data/test/plate.jpg')
test_image = transform(test_image)
test_image = test_image.view(1, 3, 224, 224)
with torch.no_grad():
outputs = model(test_image)
_, predicted = torch.max(outputs.data, 1)
print('Predicted:', 'plate' if predicted.item() == 0 else 'not plate')
```
这个代码使用了一个简单的卷积神经网络作为识别模型,使用了交叉熵损失函数和随机梯度下降优化器进行训练。训练数据和测试数据分别存放在`./data/train`和`./data/test`目录下,其中训练数据的目录结构应该为`./data/train/plate`和`./data/train/not_plate`。通过运行这个代码,你应该可以成功地进行车牌识别。
阅读全文