加入注意力机制的整个Uent模型代码
时间: 2023-06-25 11:07:16 浏览: 156
基于YOLOV8的注意力机制源代码获取,开箱即用
5星 · 资源好评率100%
下面是一个使用注意力机制的Encoder-Decoder模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, num_layers, batch_first=True)
def forward(self, input):
embedded = self.embedding(input)
output, hidden = self.gru(embedded)
return output, hidden
class Attention(nn.Module):
def __init__(self, hidden_size):
super(Attention, self).__init__()
self.hidden_size = hidden_size
self.attn = nn.Linear(hidden_size * 2, hidden_size)
self.v = nn.Linear(hidden_size, 1, bias=False)
def forward(self, hidden, encoder_outputs):
seq_len = encoder_outputs.size(1)
hidden = hidden.unsqueeze(1).repeat(1, seq_len, 1)
energy = F.relu(self.attn(torch.cat([hidden, encoder_outputs], 2)))
attention = F.softmax(self.v(energy).squeeze(2), dim=1)
context = attention.unsqueeze(1).bmm(encoder_outputs).squeeze(1)
return context
class Decoder(nn.Module):
def __init__(self, hidden_size, output_size, num_layers=1):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, num_layers, batch_first=True)
self.out = nn.Linear(hidden_size, output_size)
self.attention = Attention(hidden_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input)
context = self.attention(hidden[-1], encoder_outputs)
output, hidden = self.gru(torch.cat([embedded, context.unsqueeze(1)], 2), hidden)
output = self.out(output.squeeze(1))
output = F.log_softmax(output, dim=1)
return output, hidden
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, input, target):
encoder_outputs, encoder_hidden = self.encoder(input)
decoder_hidden = encoder_hidden
decoder_input = torch.tensor([[SOS_token]])
decoder_outputs = []
for i in range(target.size(1)):
output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
decoder_outputs.append(output)
decoder_input = target[:, i].unsqueeze(1)
output = torch.cat(decoder_outputs, 1)
return output
```
该模型由一个编码器(Encoder)和一个解码器(Decoder)组成,并使用注意力机制来提高翻译质量。编码器将输入序列嵌入到连续向量空间中,并通过GRU层进行编码,得到一组编码向量。解码器在每个时间步骤中先通过注意力机制从编码器输出中提取上下文向量,然后将该向量与解码器输入嵌入向量进行拼接,最后通过GRU层进行解码,并使用线性层将其映射到输出词汇表中的单词概率分布。
阅读全文