def extract_mel_feature(audio_file, mel_len_90fps=None): y, sr = librosa.load(audio_file) if mel_len_90fps is None: mel_len_90fps = int(len(y) / sr * 90) mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, hop_length=256) mel_dB = librosa.power_to_db(mel, ref=np.max) # fig, ax = plt.subplots() # img = librosa.display.specshow(mel_dB, x_axis='time', y_axis='mel', sr=sr, ax=ax) # fig.colorbar(img, ax=ax, format='%+2.0f dB') # ax.set(title='Mel-frequency spectrogram') # plt.show() norm_mel = np.flip(np.abs(mel_dB + 80) / 80, 0) resized_mel = cv2.resize(norm_mel, (mel_len_90fps, norm_mel.shape[0])) return resized_mel.T
时间: 2023-04-09 12:04:05 浏览: 221
这段代码的作用是提取音频文件的梅尔频谱特征。首先使用librosa库加载音频文件,如果没有指定90帧每秒的梅尔长度,则根据音频文件的采样率和长度计算出来。然后使用librosa库计算出音频文件的梅尔频谱,其中n_mels参数指定了梅尔频谱的维度为128,hop_length参数指定了每个时间步的长度为256。最后将梅尔频谱转换成分贝单位的值,以便后续处理。
相关问题
import librosa filepath = 'D:\\360se6\\bishe\\古筝\\' filename = filepath + 'gz1.wav' y, sr = librosa.load(filename,sr = None ) import librosa import matplotlib.pyplot as plt import librosa.display import numpy as np filepath = 'D:\\360se6\\bishe\\古筝\\' filename = filepath + 'gz1.wav' tempo, beats = librosa.beat.beat_track(y=y, sr=sr) y_beats = librosa.clicks(frames=beats, sr=sr) y_beats = librosa.clicks(frames=beats, sr=sr, length=len(y)) times = librosa.frames_to_time(beats, sr=sr) y_beat_times = librosa.clicks(times=times, sr=sr) y_beat_times880 = librosa.clicks(times=times, sr=sr, click_freq=880, click_duration=0.5) plt.figure() S = librosa.feature.melspectrogram(y=y, sr=sr) ax = plt.subplot(2, 1, 2) librosa.display.specshow(librosa.power_to_db(S, ref=np.max), x_axis='time', y_axis='mel') plt.subplot(2, 1, 1, sharex=ax) librosa.display.waveshow(y_beat_times, sr=sr, label='Beat clicks') plt.legend() plt.xlim(15, 30) plt.tight_layout()
这段代码使用了Python中的librosa库,通过加载音频文件,提取其节拍信息并在节拍处插入点击声,最后绘制出音频的梅尔频谱图和节拍位置的波形图。其中,`filepath`和`filename`分别指定了音频文件所在的文件夹路径和文件名,`y`和`sr`则是通过`librosa.load`函数加载音频文件后返回的音频信号和采样率。接下来,`tempo`和`beats`分别使用`librosa.beat.beat_track`函数获取音频的节奏信息。然后,`y_beats`通过`librosa.clicks`函数在节拍位置产生了一个长度与音频相同的点击声信号,`y_beat_times`和`y_beat_times880`分别使用`librosa.clicks`函数在节拍位置产生了一个与时间轴对应的点击声信号。最后,`librosa.feature.melspectrogram`函数用于提取梅尔频谱图,`librosa.display.specshow`函数和`librosa.display.waveshow`函数用于绘制出梅尔频谱图和节拍位置的波形图。
import librosa.display import matplotlib.pyplot as plt import matplotlib.colors as colors # 读取音频文件 audio_file = "D:/360se6/bishe/古筝/gz1.wav" signal, sr = librosa.load(audio_file) # 计算梅尔倒频谱 mel_spec = librosa.feature.melspectrogram(signal, sr=sr, n_mels=128) # 将梅尔倒频谱转换为对数刻度 log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) # 设置颜色映射 cmap = plt.get_cmap('coolwarm') norm = colors.Normalize(vmin=log_mel_spec.min(), vmax=log_mel_spec.max()) # 可视化梅尔倒频谱 librosa.display.specshow(log_mel_spec, sr=sr, x_axis='time', y_axis='mel', cmap=cmap, norm=norm) plt.title('Mel spectrogram') plt.show()
这段代码看起来是用于读取音频文件,并可视化梅尔倒频谱的。第一行代码中的import语句应该是以下两行代码,因为每个import语句应该占据一行:
```
import librosa.display
import matplotlib.pyplot as plt
import matplotlib.colors as colors
```
接下来,代码读取给定路径的音频文件,并使用librosa库的load()函数将其转换为波形数据。该函数返回两个值:波形数据和采样率。这里使用了"signal, sr"来接收这两个返回值。
接下来,使用librosa库的melspectrogram()函数计算梅尔倒频谱。该函数需要至少一个参数,即音频信号的波形数据。此外,还可以使用关键字参数设置采样率、频率分辨率、频率范围等参数。
接下来,使用librosa库的power_to_db()函数将梅尔倒频谱转换为对数刻度。这样做的目的是为了更好地展示频率上的差异。
然后,代码使用matplotlib库中的get_cmap()函数获取一个颜色映射对象,并使用matplotlib.colors库中的Normalize()函数创建一个归一化对象,用于将梅尔倒频谱的值映射到颜色空间中的颜色。
最后,使用librosa.display库中的specshow()函数可视化梅尔倒频谱,并使用matplotlib库中的title()函数添加标题,并使用show()函数显示图像。
如果你遇到了错误,可以将错误信息提供给我,我可以更好地帮助你解决问题。
阅读全文