TypeError: expected np.ndarray (got Tensor)
时间: 2024-02-22 15:59:26 浏览: 65
非常抱歉,我的前一条回答中有误。在PyTorch中,`F.one_hot()`函数的输入参数应该是PyTorch张量,而不是NumPy数组。因此,在将NumPy数组转换为PyTorch张量之后,可以直接将其作为`F.one_hot()`函数的输入。在本例中,您可以按照以下方式修改代码:
```
if self.onehot_y:
mask = mask if mask.ndim < 4 else mask.squeeze(dim=1)
mask = F.one_hot(mask.to(torch.int64), self.n_classes)
mask = mask.permute(0, 3, 1, 2)
```
修改后的代码中,我们首先将输入的`mask`张量进行必要的维度调整,然后使用`to()`方法将其转换为`torch.int64`类型的张量。然后,我们直接将处理后的`mask`张量作为`F.one_hot()`函数的输入,并使用`permute()`函数将处理后的`mask`张量的维度按照指定的顺序重排,即将批次大小(如果有的话)移动到第0个维度的位置,将通道数移动到第1个维度的位置,将高度移动到第2个维度的位置,将宽度移动到第3个维度的位置。注意,由于PyTorch的`permute()`函数和NumPy的`transpose()`函数的参数顺序不同,所以在PyTorch中需要使用`permute()`函数将通道数和高度的位置交换。
阅读全文