假脱机打印系统 具体要求:一些进程将自己的输出数据写到磁盘文件里,并将输出文件名写到进程间共享的内存里。打印守护进程从共享内存里读取文件名,将磁盘文件的数据输出到屏幕上。 在共享内存里实现环形队列,对共享内存的访问要保证互斥。输出进程和 打印守护进程要实现同步。

时间: 2024-04-01 18:37:23 浏览: 47
假脱机打印系统是一种将打印任务从计算机主机上移动到打印机周边设备上的打印技术。这种技术的好处是可以将计算机主机的资源释放出来,提高计算机的性能。下面是实现这种打印系统的一些要求: 1. 输出进程将自己的输出数据写入磁盘文件,并将输出文件名写入进程间共享的内存中。打印守护进程从共享内存中读取文件名,并将磁盘文件的数据输出到屏幕上。 2. 在共享内存中实现环形队列,以便多个进程可以共享使用该队列。同时,对共享内存的访问要保证互斥,以避免多个进程同时访问导致数据损坏。 3. 输出进程和打印守护进程要实现同步,以确保打印顺序的正确性。可以使用信号量等同步机制来实现。 4. 打印守护进程应该具备一定的容错能力,以处理可能出现的错误情况,例如打印机故障、磁盘空间不足等。 5. 打印守护进程可以根据打印任务的优先级,对打印任务进行排序,确保高优先级的任务先被处理。 6. 打印守护进程应该具备一定的安全性,确保只有授权用户才能访问打印任务和打印输出。可以使用访问控制列表等安全机制来实现。 实现假脱机打印系统需要对进程间通信、文件操作、共享内存、同步机制等方面有一定的掌握和实践经验。同时,需要考虑系统的可靠性、安全性、可扩展性等方面的问题。
相关问题

写一个假脱机打印系统 具体要求:一些进程将自己的输出数据写到磁盘文件里,并将输出文件名写到进程间共享的内存里。打印守护进程从共享内存里读取文件名,将磁盘文件的数据输出到屏幕上。 使用vc6. 0的编译环境 在共享内存里实现环形队列,对共享内存的访问要保证互斥。输出进程和打印守护进程要实现同步。

下面是一个简单的假脱机打印系统的实现,使用了C++语言和Windows API: ``` #include <iostream> #include <windows.h> #include <string> using namespace std; // 共享内存结构体 struct SharedMemory { HANDLE mutex; // 互斥量 HANDLE empty; // 空闲区域信号量 HANDLE full; // 已占用区域信号量 int read; // 读指针 int write; // 写指针 char data[1024]; // 数据区 }; // 输出进程 DWORD WINAPI OutputThread(LPVOID lpParameter) { string filename; // 输出文件名 SharedMemory* sharedMem = (SharedMemory*)lpParameter; while (true) { // 生成输出文件名 filename = "output" + to_string(rand() % 100) + ".txt"; // 写入数据到输出文件 ofstream outFile(filename); outFile << "This is output data." << endl; outFile.close(); // 写入文件名到共享内存 WaitForSingleObject(sharedMem->empty, INFINITE); // 等待空闲区域 WaitForSingleObject(sharedMem->mutex, INFINITE); // 获取互斥量 strcpy(sharedMem->data + sharedMem->write, filename.c_str()); sharedMem->write = (sharedMem->write + filename.length() + 1) % 1024; ReleaseMutex(sharedMem->mutex); // 释放互斥量 ReleaseSemaphore(sharedMem->full, 1, NULL); // 发送已占用区域信号量 } return 0; } // 打印守护进程 DWORD WINAPI PrintThread(LPVOID lpParameter) { SharedMemory* sharedMem = (SharedMemory*)lpParameter; char filename[256]; while (true) { // 从共享内存中读取文件名 WaitForSingleObject(sharedMem->full, INFINITE); // 等待已占用区域信号量 WaitForSingleObject(sharedMem->mutex, INFINITE); // 获取互斥量 strcpy(filename, sharedMem->data + sharedMem->read); sharedMem->read = (sharedMem->read + strlen(filename) + 1) % 1024; ReleaseMutex(sharedMem->mutex); // 释放互斥量 ReleaseSemaphore(sharedMem->empty, 1, NULL); // 发送空闲区域信号量 // 输出文件内容 ifstream inFile(filename); string line; while (getline(inFile, line)) { cout << line << endl; } inFile.close(); } return 0; } int main() { // 初始化随机数生成器 srand(GetTickCount()); // 创建共享内存 HANDLE hMapFile = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, sizeof(SharedMemory), TEXT("SharedMem")); SharedMemory* sharedMem = (SharedMemory*)MapViewOfFile(hMapFile, FILE_MAP_ALL_ACCESS, 0, 0, sizeof(SharedMemory)); // 初始化共享内存 sharedMem->mutex = CreateMutex(NULL, FALSE, TEXT("SharedMutex")); sharedMem->empty = CreateSemaphore(NULL, 1024, 1024, TEXT("SharedEmpty")); sharedMem->full = CreateSemaphore(NULL, 0, 1024, TEXT("SharedFull")); sharedMem->read = 0; sharedMem->write = 0; // 创建输出线程和打印线程 HANDLE hOutputThread = CreateThread(NULL, 0, OutputThread, sharedMem, 0, NULL); HANDLE hPrintThread = CreateThread(NULL, 0, PrintThread, sharedMem, 0, NULL); // 等待输出线程和打印线程结束 WaitForSingleObject(hOutputThread, INFINITE); WaitForSingleObject(hPrintThread, INFINITE); // 清理资源 CloseHandle(hMapFile); CloseHandle(sharedMem->mutex); CloseHandle(sharedMem->empty); CloseHandle(sharedMem->full); UnmapViewOfFile(sharedMem); return 0; } ``` 该程序创建了一个大小为1024字节的共享内存区域,用于存储输出文件名。输出进程循环生成一个随机的输出文件名,并将文件名写入共享内存中。打印守护进程从共享内存中读取文件名,并输出文件内容到屏幕上。在共享内存的访问上,互斥量和信号量保证了数据的正确性和同步性。

用c++写一个假脱机系统,具体要求:一些进程将自己的输出数据写到磁盘文件里,并将输出文件名写到进程间共享的内存里。打印守护进程从共享内存里读取文件名,将磁盘文件的数据输出到屏幕上。 在共享内存里实现环形队列,对共享内存的访问要保证互斥。输出进程和 打印守护进程要实现同步。

好的,我可以为您提供一个基本的C++代码框架,用于实现您的假脱机系统。代码如下: ``` #include <iostream> #include <fstream> #include <string> #include <unistd.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #include <semaphore.h> using namespace std; #define SHM_SIZE 4096 #define QUEUE_SIZE 10 struct Queue { string file_names[QUEUE_SIZE]; int front; int rear; }; int main() { // 创建共享内存 int shmid = shmget(IPC_PRIVATE, SHM_SIZE, IPC_CREAT | 0666); if (shmid == -1) { cout << "Error: Failed to create shared memory." << endl; return 1; } // 连接共享内存 char *shm_ptr = (char *)shmat(shmid, NULL, 0); if (shm_ptr == (char *)-1) { cout << "Error: Failed to attach shared memory." << endl; return 1; } // 初始化共享内存 Queue *queue = (Queue *)shm_ptr; queue->front = queue->rear = 0; // 初始化互斥锁和信号量 sem_t *mutex = sem_open("/mutex", O_CREAT, 0644, 1); sem_t *empty = sem_open("/empty", O_CREAT, 0644, QUEUE_SIZE); sem_t *full = sem_open("/full", O_CREAT, 0644, 0); // 创建子进程 pid_t pid = fork(); if (pid == -1) { cout << "Error: Failed to create child process." << endl; return 1; } else if (pid == 0) { // 子进程为输出进程 ofstream fout; string file_name; while (true) { // 从键盘读取文件名,写入磁盘文件 cin >> file_name; fout.open(file_name.c_str()); if (fout.is_open()) { fout << "Output data." << endl; fout.close(); // 写入共享内存 sem_wait(empty); sem_wait(mutex); queue->file_names[queue->rear] = file_name; queue->rear = (queue->rear + 1) % QUEUE_SIZE; sem_post(mutex); sem_post(full); } else { cout << "Error: Failed to open file " << file_name << "." << endl; } } } else { // 父进程为打印守护进程 ifstream fin; string file_name; while (true) { // 从共享内存读取文件名,打印文件内容 sem_wait(full); sem_wait(mutex); file_name = queue->file_names[queue->front]; queue->front = (queue->front + 1) % QUEUE_SIZE; sem_post(mutex); sem_post(empty); fin.open(file_name.c_str()); if (fin.is_open()) { cout << "Printing file " << file_name << "..." << endl; string line; while (getline(fin, line)) { cout << line << endl; } fin.close(); } else { cout << "Error: Failed to open file " << file_name << "." << endl; } } } // 销毁互斥锁和信号量 sem_unlink("/mutex"); sem_unlink("/empty"); sem_unlink("/full"); // 脱离共享内存 shmdt(shm_ptr); // 删除共享内存 shmctl(shmid, IPC_RMID, NULL); return 0; } ``` 这段代码实现了一个共享内存环形队列,用于存储输出进程写入的文件名。同时,使用互斥锁和信号量保证了对共享内存的访问互斥,以及输出进程和打印守护进程的同步。具体实现细节可以根据您的具体需求进行修改。
阅读全文

相关推荐

最新推荐

recommend-type

Spooling假脱机输入输出模拟

二是具体的SP00LING输出进程,根据请求块将信息输出到文本框。流程图清晰地展示了这一过程,帮助理解系统的运作逻辑。 综上所述,Spooling假脱机输入输出模拟通过优化进程调度和利用内存缓冲,实现了多进程同时进行...
recommend-type

假脱机打印程序与虚拟设备

这种系统的核心是服务器端的假脱机打印程序,它模拟了一个快速的打印机,但实际上,文件并不会直接输出到打印机,而是先被存储到磁盘上的虚拟设备(即打印请求队列)中。这样做的好处是可以提高用户响应时间,因为...
recommend-type

微信小程序,小程序商城,商城,springboot框架,vue管理系统,java后台.zip

微信小程序,小程序商城,商城,springboot框架,vue管理系统,java后台.zip
recommend-type

PPT图标素材矢量图源文件

PPT图标素材矢量图源文件
recommend-type

私家车位共享系统 微信小程序+SpringBoot毕业设计 源码+数据库+论文+启动教程.zip

私家车位共享系统 微信小程序+SpringBoot毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1oiBpYcEBp
recommend-type

Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南

资源摘要信息:"RaspberryPi-OpenCL驱动程序" 知识点一:Raspberry Pi与OpenCL Raspberry Pi是一系列低成本、高能力的单板计算机,由Raspberry Pi基金会开发。这些单板计算机通常用于教育、电子原型设计和家用服务器。而OpenCL(Open Computing Language)是一种用于编写程序,这些程序可以在不同种类的处理器(包括CPU、GPU和其他处理器)上执行的标准。OpenCL驱动程序是为Raspberry Pi上的应用程序提供支持,使其能够充分利用板载硬件加速功能,进行并行计算。 知识点二:调整Raspberry Pi映像大小 在准备Raspberry Pi的操作系统映像以便在QEMU仿真器中使用时,我们经常需要调整映像的大小以适应仿真环境或为了确保未来可以进行系统升级而留出足够的空间。这涉及到使用工具来扩展映像文件,以增加可用的磁盘空间。在描述中提到的命令包括使用`qemu-img`工具来扩展映像文件`2021-01-11-raspios-buster-armhf-lite.img`的大小。 知识点三:使用QEMU进行仿真 QEMU是一个通用的开源机器模拟器和虚拟化器,它能够在一台计算机上模拟另一台计算机。它可以运行在不同的操作系统上,并且能够模拟多种不同的硬件设备。在Raspberry Pi的上下文中,QEMU能够被用来模拟Raspberry Pi硬件,允许开发者在没有实际硬件的情况下测试软件。描述中给出了安装QEMU的命令行指令,并建议更新系统软件包后安装QEMU。 知识点四:管理磁盘分区 描述中提到了使用`fdisk`命令来检查磁盘分区,这是Linux系统中用于查看和修改磁盘分区表的工具。在进行映像调整大小的过程中,了解当前的磁盘分区状态是十分重要的,以确保不会对现有的数据造成损害。在确定需要增加映像大小后,通过指定的参数可以将映像文件的大小增加6GB。 知识点五:Raspbian Pi OS映像 Raspbian是Raspberry Pi的官方推荐操作系统,是一个为Raspberry Pi量身打造的基于Debian的Linux发行版。Raspbian Pi OS映像文件是指定的、压缩过的文件,包含了操作系统的所有数据。通过下载最新的Raspbian Pi OS映像文件,可以确保你拥有最新的软件包和功能。下载地址被提供在描述中,以便用户可以获取最新映像。 知识点六:内核提取 描述中提到了从仓库中获取Raspberry-Pi Linux内核并将其提取到一个文件夹中。这意味着为了在QEMU中模拟Raspberry Pi环境,可能需要替换或更新操作系统映像中的内核部分。内核是操作系统的核心部分,负责管理硬件资源和系统进程。提取内核通常涉及到解压缩下载的映像文件,并可能需要重命名相关文件夹以确保与Raspberry Pi的兼容性。 总结: 描述中提供的信息详细说明了如何通过调整Raspberry Pi操作系统映像的大小,安装QEMU仿真器,获取Raspbian Pi OS映像,以及处理磁盘分区和内核提取来准备Raspberry Pi的仿真环境。这些步骤对于IT专业人士来说,是在虚拟环境中测试Raspberry Pi应用程序或驱动程序的关键步骤,特别是在开发OpenCL应用程序时,对硬件资源的配置和管理要求较高。通过理解上述知识点,开发者可以更好地利用Raspberry Pi的并行计算能力,进行高性能计算任务的仿真和测试。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Fluent UDF实战攻略:案例分析与高效代码编写

![Fluent UDF实战攻略:案例分析与高效代码编写](https://databricks.com/wp-content/uploads/2021/10/sql-udf-blog-og-1024x538.png) 参考资源链接:[fluent UDF中文帮助文档](https://wenku.csdn.net/doc/6401abdccce7214c316e9c28?spm=1055.2635.3001.10343) # 1. Fluent UDF基础与应用概览 流体动力学仿真软件Fluent在工程领域被广泛应用于流体流动和热传递问题的模拟。Fluent UDF(User-Defin
recommend-type

如何使用DPDK技术在云数据中心中实现高效率的流量监控与网络安全分析?

在云数据中心领域,随着服务的多样化和用户需求的增长,传统的网络监控和分析方法已经无法满足日益复杂的网络环境。DPDK技术的引入,为解决这一挑战提供了可能。DPDK是一种高性能的数据平面开发套件,旨在优化数据包处理速度,降低延迟,并提高网络吞吐量。具体到实现高效率的流量监控与网络安全分析,可以遵循以下几个关键步骤: 参考资源链接:[DPDK峰会:云数据中心安全实践 - 流量监控与分析](https://wenku.csdn.net/doc/1bq8jittzn?spm=1055.2569.3001.10343) 首先,需要了解DPDK的基本架构和工作原理,特别是它如何通过用户空间驱动程序和大
recommend-type

Apache RocketMQ Go客户端:全面支持与消息处理功能

资源摘要信息:"rocketmq-client-go:Apache RocketMQ Go客户端" Apache RocketMQ Go客户端是专为Go语言开发的RocketMQ客户端库,它几乎涵盖了Apache RocketMQ的所有核心功能,允许Go语言开发者在Go项目中便捷地实现消息的发布与订阅、访问控制列表(ACL)权限管理、消息跟踪等高级特性。该客户端库的设计旨在提供一种简单、高效的方式来与RocketMQ服务进行交互。 核心知识点如下: 1. 发布与订阅消息:RocketMQ Go客户端支持多种消息发送模式,包括同步模式、异步模式和单向发送模式。同步模式允许生产者在发送消息后等待响应,确保消息成功到达。异步模式适用于对响应时间要求不严格的场景,生产者在发送消息时不会阻塞,而是通过回调函数来处理响应。单向发送模式则是最简单的发送方式,只负责将消息发送出去而不关心是否到达,适用于对消息送达不敏感的场景。 2. 发送有条理的消息:在某些业务场景中,需要保证消息的顺序性,比如订单处理。RocketMQ Go客户端提供了按顺序发送消息的能力,确保消息按照发送顺序被消费者消费。 3. 消费消息的推送模型:消费者可以设置为使用推送模型,即消息服务器主动将消息推送给消费者,这种方式可以减少消费者轮询消息的开销,提高消息处理的实时性。 4. 消息跟踪:对于生产环境中的消息传递,了解消息的完整传递路径是非常必要的。RocketMQ Go客户端提供了消息跟踪功能,可以追踪消息从发布到最终消费的完整过程,便于问题的追踪和诊断。 5. 生产者和消费者的ACL:访问控制列表(ACL)是一种权限管理方式,RocketMQ Go客户端支持对生产者和消费者的访问权限进行细粒度控制,以满足企业对数据安全的需求。 6. 如何使用:RocketMQ Go客户端提供了详细的使用文档,新手可以通过分步说明快速上手。而有经验的开发者也可以根据文档深入了解其高级特性。 7. 社区支持:Apache RocketMQ是一个开源项目,拥有活跃的社区支持。无论是使用过程中遇到问题还是想要贡献代码,都可以通过邮件列表与社区其他成员交流。 8. 快速入门:为了帮助新用户快速开始使用RocketMQ Go客户端,官方提供了快速入门指南,其中包含如何设置rocketmq代理和名称服务器等基础知识。 在安装和配置方面,用户通常需要首先访问RocketMQ的官方网站或其在GitHub上的仓库页面,下载最新版本的rocketmq-client-go包,然后在Go项目中引入并初始化客户端。配置过程中可能需要指定RocketMQ服务器的地址和端口,以及设置相应的命名空间或主题等。 对于实际开发中的使用,RocketMQ Go客户端的API设计注重简洁性和直观性,使得Go开发者能够很容易地理解和使用,而不需要深入了解RocketMQ的内部实现细节。但是,对于有特殊需求的用户,Apache RocketMQ社区文档和代码库中提供了大量的参考信息和示例代码,可以用于解决复杂的业务场景。 由于RocketMQ的版本迭代,不同版本的RocketMQ Go客户端可能会引入新的特性和对已有功能的改进。因此,用户在使用过程中应该关注官方发布的版本更新日志,以确保能够使用到最新的特性和性能优化。对于版本2.0.0的特定特性,文档中提到的以同步模式、异步模式和单向方式发送消息,以及消息排序、消息跟踪、ACL等功能,是该版本客户端的核心优势,用户可以根据自己的业务需求进行选择和使用。 总之,rocketmq-client-go作为Apache RocketMQ的Go语言客户端,以其全面的功能支持、简洁的API设计、活跃的社区支持和详尽的文档资料,成为Go开发者在构建分布式应用和消息驱动架构时的得力工具。