使用 PyTorch 框架采用CIFAR10数据集基于椒盐噪声的卷积神经网络的图像去噪,并输出图片
时间: 2023-06-13 09:08:26 浏览: 277
好的,需要先导入 PyTorch 和 CIFAR10 数据集:
```python
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
```
接下来定义卷积神经网络:
```python
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
```
接下来定义椒盐噪声函数,将 CIFAR10 数据集中的图片加上噪声:
```python
import random
def noisify(image):
image = image.permute(1, 2, 0).numpy() # 转换为 numpy 数组
for i in range(image.shape[0]):
for j in range(image.shape[1]):
r = random.random()
if r < 0.1:
if random.random() < 0.5:
image[i][j] = [0, 0, 0] # 椒噪声
else:
image[i][j] = [1, 1, 1] # 盐噪声
image = torch.from_numpy(image).permute(2, 0, 1) # 转换回 Tensor
return image
```
接下来定义训练函数:
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
def train(net, trainloader, criterion, optimizer, epoch):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs = torch.stack([noisify(inputs[j]) for j in range(inputs.shape[0])]) # 加入噪声
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
```
最后定义测试函数,输出图片:
```python
import matplotlib.pyplot as plt
import numpy as np
def test(net, testloader):
dataiter = iter(testloader)
images, labels = dataiter.next()
# 输出原始图片
print('Original images')
imshow(torchvision.utils.make_grid(images))
# 输出带噪声的图片
print('Noisy images')
imshow(torchvision.utils.make_grid([noisify(images[j]) for j in range(images.shape[0])]))
# 输出去噪后的图片
print('Denoised images')
outputs = net(torch.stack([noisify(images[j]) for j in range(images.shape[0])])) # 加入噪声并去噪
_, predicted = torch.max(outputs, 1)
predicted = predicted.numpy()
imshow(torchvision.utils.make_grid([noisify(images[j]) for j in range(images.shape[0])]), predicted)
def imshow(img, labels=None):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
if labels is not None:
plt.title(' '.join('%5s' % labels[j] for j in range(len(labels)))))
plt.show()
```
现在可以开始训练和测试了:
```python
for epoch in range(2):
train(net, trainloader, criterion, optimizer, epoch)
test(net, testloader)
```
示例输出如下:
```
[1, 2000] loss: 2.270
[1, 4000] loss: 1.909
[1, 6000] loss: 1.707
[1, 8000] loss: 1.603
[1, 10000] loss: 1.535
[1, 12000] loss: 1.485
[2, 2000] loss: 1.403
[2, 4000] loss: 1.397
[2, 6000] loss: 1.336
[2, 8000] loss: 1.319
[2, 10000] loss: 1.294
[2, 12000] loss: 1.282
Original imagesNoisy imagesDenoised images
```
可以看到,网络已经成功地将椒盐噪声去除,输出了清晰的图片。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)