用model.add编写基于一维DCNN的滚动轴承迁移诊断代码,以同时减少源域分类损失和源域与目标域的MMD损失为总的损失训练神经网络,源域包含Xs,ys;目标域只有Xt
时间: 2024-02-12 13:07:41 浏览: 86
好的,我来回答你的问题。首先,基于一维DCNN的滚动轴承迁移诊断代码需要用到Keras框架。具体来说,可以按照以下步骤编写代码:
1. 导入所需的库和模块:
```
from keras.models import Sequential
from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping
from keras.layers.normalization import BatchNormalization
import numpy as np
from sklearn.metrics import accuracy_score
from keras.models import Model
import keras.backend as K
```
2. 定义DCNN模型:
```
def build_dcnn(input_shape):
model = Sequential()
model.add(Conv1D(32, 3, activation='relu', input_shape=input_shape))
model.add(BatchNormalization())
model.add(MaxPooling1D(2))
model.add(Conv1D(64, 3, activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling1D(2))
model.add(Conv1D(128, 3, activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling1D(2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1, activation='sigmoid'))
return model
```
3. 定义源域的分类损失函数:
```
def source_classification_loss(y_true, y_pred):
return K.mean(K.binary_crossentropy(y_true, y_pred))
```
4. 定义MMD损失函数:
```
def mmd_loss(source, target):
source_mean = K.mean(source, axis=0)
target_mean = K.mean(target, axis=0)
diff = source_mean - target_mean
return K.sum(K.square(diff))
```
5. 定义总的损失函数:
```
def total_loss(y_true, y_pred, source, target, lambda_mmd):
source_loss = source_classification_loss(y_true, y_pred)
mmd = mmd_loss(source, target)
return source_loss + lambda_mmd * mmd
```
6. 编译模型:
```
input_shape = (Xs.shape[1], 1)
dcnn_model = build_dcnn(input_shape)
optimizer = Adam(lr=0.001)
dcnn_model.compile(optimizer=optimizer, loss=lambda y_true, y_pred: total_loss(y_true, y_pred, source, target, lambda_mmd=0.1))
```
7. 训练模型:
```
early_stopping = EarlyStopping(monitor='val_loss', patience=10)
dcnn_model.fit(Xs, ys, validation_split=0.2, epochs=100, callbacks=[early_stopping], verbose=2)
```
其中,Xs是源域的数据,ys是源域的标签,Xt是目标域的数据。在训练时,使用validation_split将源域数据分为训练集和验证集,以便监控模型的过拟合情况。
以上就是基于一维DCNN的滚动轴承迁移诊断代码的实现方法。在编写代码时,需要注意调整超参数,例如学习率、滤波器数量、MMD损失的权重等,以获得更好的性能。
阅读全文