如何用与下面这段代码相同的方式从本地文件夹导入数据,(x_train, y_train), (x_test, y_test) = cifar10.load_data()
时间: 2023-12-24 16:53:30 浏览: 110
你可以使用numpy的load函数从本地导入数据,具体步骤如下:
1. 确保你已经安装了numpy库,如果没有安装可以使用pip install numpy命令进行安装。
2. 从本地文件夹读取数据,例如:
```python
import numpy as np
# 读取训练数据
x_train = np.load('train_x.npy')
y_train = np.load('train_y.npy')
# 读取测试数据
x_test = np.load('test_x.npy')
y_test = np.load('test_y.npy')
```
3. 确保你的数据存储在与你的代码相同的目录下,并且文件名与代码中使用的文件名相同。如果文件存储在不同的目录下,你需要提供正确的路径。
4. 确保你的数据与cifar10数据集具有相同的格式,例如x_train的shape应该是(50000, 32, 32, 3),y_train的shape应该是(50000, 1),x_test的shape应该是(10000, 32, 32, 3),y_test的shape应该是(10000, 1)。如果你的数据格式不正确,你需要对其进行调整。
相关问题
导入stl10数据集,并分别保存x_train、x_test、y_train和y_test为npy文件
好的,这个问题很简单。您可以按照以下步骤导入和保存数据集:
1. 下载 stl10 数据集,并将其解压缩到合适的文件夹中。
2. 使用 Python 的 NumPy 库,读取训练和测试数据集。您可以使用以下命令读取数据:
```python
import os
import numpy as np
from PIL import Image
from torchvision.datasets import STL10
# 下载数据集,如果已经存在,则不下载
dataset = STL10(os.path.join('data', 'stl10'), split='train', download=True)
# 将图像转换为像素数组
x_train = np.array([np.array(Image.fromarray(img).convert('RGB').resize((32, 32))) for img, label in dataset])
y_train = np.array([label for img, label in dataset])
print("x_train shape:", x_train.shape)
print("y_train shape:", y_train.shape)
```
这段代码将训练数据集转换为大小为 5000x32x32x3 的 NumPy 数组,标签也被转换为大小为 5000 的 NumPy 数组。
3. 同样的方式读取测试数据集。
```python
dataset = STL10(os.path.join('data', 'stl10'), split='test', download=True)
x_test = np.array([np.array(Image.fromarray(img).convert('RGB').resize((32, 32))) for img, label in dataset])
y_test = np.array([label for img, label in dataset])
print("x_test shape:", x_test.shape)
print("y_test shape:", y_test.shape)
```
4. 将训练和测试数据集保存为 numpy 的 .npy 文件:
```python
np.save('x_train.npy', x_train)
np.save('y_train.npy', y_train)
np.save('x_test.npy', x_test)
np.save('y_test.npy', y_test)
```
这将把 numpy 数组保存为 .npy 文件,以便以后再次使用。
请调试这段代码以实现梯度上升模型进行波士顿房价预测,画出预测图,代码如下:import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error plt.style.use('ggplot') # 读入数据 data = pd.read_csv('D:\PycharmProjects\Boston_housing\housing.csv') X, y = data[data.columns.delete(-1)], data['MEDV'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=888) from sklearn.preprocessing import StandardScaler ss_x = StandardScaler() X_train = ss_x.fit_transform(X_train) X_test = ss_x.transform(X_test) ss_y = StandardScaler() y_train = ss_y.fit_transform(y_train.values.reshape(-1, 1)) y_test = ss_y.transform(y_test.values.reshape(-1, 1)) from sklearn import ensemble # params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,'learning_rate': 0.01, 'loss': 'ls'} # clf = ensemble.GradientBoostingRegressor(**params) clf = ensemble.GradientBoostingRegressor() clf.fit(X_train, y_train) clf_pre_values = clf.predict(X_test) # 预测值 print('SCORE:{:.4f}'.format(clf.score(X_test, y_test))) # 模型评分 print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test, clf_pre_values)))) # RMSE(标准误差) clf_pre = pd.DataFrame() clf_pre['Predict'] = clf_pre_values clf_pre['Truth'] = y_test.reset_index(drop=True) clf_pre.plot(figsize=(18, 8)) plt.figure() plt.show()
根据您提供的代码,我注意到您的代码中没有明确指定数据文件的路径。请确保`housing.csv`文件与您的代码在同一个文件夹中,并将文件的路径正确指定为相对路径或绝对路径。
另外,您的代码中没有导入`matplotlib.pyplot`模块。请在代码的开头添加以下导入语句:
```python
import matplotlib.pyplot as plt
```
这样才能正确使用`plt.figure()`和`plt.show()`函数。
请尝试调试代码并确保数据文件路径正确,导入所需的模块,并重新运行代码。希望能帮到您!如果还有其他问题,请随时提问。
阅读全文