def load_data(): global feature global label global feature_full global label_full feature=[] label=[] feature_full=[] label_full=[] file_path ='kddcup.data_10_percent_corrected_handled2.cvs' with (open(file_path,'r')) as data_from: csv_reader=csv.reader(data_from) for i in csv_reader: # print i label_list=[0]*23 feature.append(i[:36]) label_list[int(i[41])]=1 label.append(label_list),报错IndexError: list index out of range,怎么改

时间: 2024-03-10 11:46:31 浏览: 60
这个错误是因为在处理数据的过程中,某个列表的索引超出了其范围。根据你提供的代码,这个错误可能是由于以下原因引起的: 1. 数据文件的某些行不是完整的,或者其中一些行的列数小于36或41。 2. 数据文件的格式可能不正确,导致程序无法正确解析数据。 你可以尝试使用 try-except 语句来捕获这个错误,例如: ``` try: # your code here except IndexError: print("IndexError: list index out of range") ``` 此外,你还可以在读取数据的时候增加一些判断来避免这个错误的发生,例如: ``` for i in csv_reader: if len(i) < 42: continue label_list=[0]*23 feature.append(i[:36]) label_list[int(i[41])]=1 label.append(label_list) ``` 这段代码会跳过长度小于42的行,以避免出现索引越界的问题。
相关问题

解释代码def dataIterator(feature_file,label_file,dictionary,batch_size,batch_Imagesize,maxlen,maxImagesize): fp=open(feature_file,'rb') features=pkl.load(fp) fp.close() fp2=open(label_file,'r') labels=fp2.readlines() fp2.close() targets={} # map word to int with dictionary for l in labels: tmp=l.strip().split() uid=tmp[0] w_list=[] for w in tmp[1:]: #if dictionary.has_key(w): if w in dictionary.keys(): w_list.append(dictionary[w]) else: print ('a word not in the dictionary !! sentence ',uid,'word ', w) sys.exit() targets[uid]=w_list imageSize={} for uid,fea in features.items(): imageSize[uid]=fea.shape[1]*fea.shape[2] imageSize= sorted(imageSize.items(), key=lambda d:d[1]) # sorted by sentence length, return a list with each triple element feature_batch=[] label_batch=[] feature_total=[] label_total=[] uidList=[] batch_image_size=0 biggest_image_size=0 i=0 for uid,size in imageSize: if size>biggest_image_size: biggest_image_size=size fea=features[uid] # cv2.namedWindow(uid, 0) # cv2.imshow(uid, fea) # cv2.waitKey(0) lab=targets[uid] batch_image_size=biggest_image_size*(i+1) if len(lab)>maxlen: print ('sentence', uid, 'length bigger than', maxlen, 'ignore') elif size>maxImagesize: print ('image', uid, 'size bigger than', maxImagesize, 'ignore') else: uidList.append(uid) if batch_image_size>batch_Imagesize or i==batch_size: # a batch is full feature_total.append(feature_batch) label_total.append(label_batch) i=0 biggest_image_size=size feature_batch=[] label_batch=[] feature_batch.append(fea) label_batch.append(lab) batch_image_size=biggest_image_size*(i+1) i+=1 else: feature_batch.append(fea) label_batch.append(lab) i+=1 # last batch feature_total.append(feature_batch) label_total.append(label_batch) print ('total ',len(feature_total), 'batch data loaded') return list(zip(feature_total,label_total)),uidList

这段代码定义了一个名为dataIterator的函数,它有七个参数:feature_file、label_file、dictionary、batch_size、batch_Imagesize、maxlen和maxImagesize。 函数的作用是迭代读取特征文件和标签文件中的数据,并将它们转换成模型可以处理的格式。其中,特征文件是一个pickle文件,需要使用pkl.load()函数来读取;标签文件是一个文本文件,需要使用readlines()函数来读取。 函数的返回值是一个字典targets,其中包含了每个批次的特征和标签数据。每个批次的大小由batch_size参数指定,每个图像的大小由batch_Imagesize参数指定。同时,为了避免数据过长或过大,函数还对每个样本的长度和图像大小进行了限制,分别由maxlen和maxImagesize参数指定。
阅读全文

相关推荐

最新推荐

recommend-type

Python中if __name__ == '__main__'作用解析

def __init__(self): pass def f(self): print('Hello, World!') if __name__ == '__main__': Test().f() ``` 当你在命令行环境中直接运行 `python Test.py` 时,`__name__` 的值是 `'__main__'`,因此 `if ...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

def AUC(y_true, y_pred): not_y_pred = K.logical_not(y_pred) y_int1 = y_true * y_pred y_int0 = not_y_pred * not_y_pred TP = K.sum(y_pred * y_int1) FP = K.sum(y_pred) - TP TN = K.sum(not_y_pred * ...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

keras的load_model实现加载含有参数的自定义模型

例如,可能会遇到如`('Keyword argument not understood:', u'data_format')`这样的报错。这种情况下,可以打开`.h5`模型文件,查看其中记录的Keras版本,然后安装与该版本兼容的Keras库来解决问题。具体操作如下: ...
recommend-type

Python中 Global和Nonlocal的用法详解

Python中的`global`和`nonlocal`关键字是用来处理变量作用域的。理解这两个关键字对于编写复杂的、具有嵌套函数的Python程序至关重要。 首先,我们来深入理解`global`关键字。`global`的作用是在函数或其他局部作用...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。