yolov8s框架解析
时间: 2023-10-04 07:13:29 浏览: 179
YOLOv8s框架是一种基于YOLOv3的目标检测算法,它采用了一系列的改进来提高检测的精度和速度。下面是YOLOv8s框架的一些解析要点:
1. Backbone网络:YOLOv8s使用Darknet53作为其主干网络(backbone),它是一个53层的卷积神经网络。Darknet53能够提取图像的高级特征,有助于提高检测性能。
2. 特征金字塔(FPN):YOLOv8s引入了特征金字塔网络(FPN),以便在不同尺度上检测不同大小的目标。FPN通过在网络中引入多个特征层,将底层特征与高层特征相结合,从而实现了多尺度的目标检测。
3. Neck部分:YOLOv8s使用了PANet作为其neck部分,PANet能够有效地提取多尺度特征并融合它们,提高了目标检测的精度。
4. Head部分:YOLOv8s的头部网络由多个卷积层和全连接层组成,用于生成目标检测的边界框和类别概率。与YOLOv3相比,YOLOv8s还引入了SE模块和SAM模块来增强特征表示能力。
5. 训练策略:YOLOv8s使用了一种称为"CutMix"的数据增强方法,它将多个图像进行混合,以产生更多的训练样本。此外,YOLOv8s还使用了学习率预热、余弦退火等策略来优化模型的训练过程。
阅读全文