logistic 回归
时间: 2023-11-24 18:08:38 浏览: 96
Logistic回归是一种二分类算法,它的主要思想是根据现有的数据点,对分类边界线建立回归公式,将这些点的分布大致符合这条线的轨迹,从而实现对新数据的分类。在Logistic回归中,我们需要一个函数,接受所有的输入然后预测出类别。例如,在数据只有两个类别的情况下,上述函数应该要输出0或1。为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,将这个总和代入sigmoid函数中,得到一个范围在0~1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类。因此,Logistic回归也可以被看成是一种概率估计。
相关问题
Logistic回归分析之二元Logistic回归
二元Logistic回归是一种分类方法,用于预测离散的二元输出结果(例如:是/否,正/负)。它基于Logistic回归模型,并使用逻辑函数来模拟结果的概率。
二元Logistic回归在许多场景中很有用,如预测某个疾病的病因、分析一个客户是否会购买某种产品等。
通过分析训练数据,二元Logistic回归模型可以确定一组系数,这些系数可以用来对新的输入数据进行分类。在分类时,算法会根据输入数据和系数计算一个概率,该概率表示该数据属于正类的可能性。
总的来说,二元Logistic回归是一种简单而有效的分类算法,广泛应用于数据挖掘和机器学习领域。
二元logistic回归分析和多元logistic回归分析区别
二元logistic回归分析是一种用于解决二分类问题的回归分析方法,它假设因变量服从二项分布,通过对自变量与因变量之间的关系进行建模,得到一个逻辑函数(logistic function),从而预测新的观测值的类别。
多元logistic回归分析则是一种用于解决多分类问题的回归分析方法,它假设因变量服从多项分布,通过对自变量与因变量之间的关系进行建模,得到多个逻辑函数,从而预测新的观测值的类别。
因此,二元logistic回归分析与多元logistic回归分析在应用场景、模型假设和建模方法等方面都存在差异。
阅读全文