使用c语言编写基于STM32F103ZET6芯片的双正弦信号(使用DAC,DMA,定时器,且PE2和PE3按键控制TIM2定时器的周期值增大和减小(500)

时间: 2023-06-25 19:04:20 浏览: 165
以下是基于STM32F103ZET6芯片的C语言代码,实现双正弦信号的输出和按键控制TIM2定时器周期值的增大和减小: ```c #include "stm32f10x.h" #define DAC_DHR12R2_ADDRESS 0x40007414 uint16_t sinTable[256] = { 2047, 2097, 2147, 2197, 2247, 2297, 2347, 2397, 2447, 2496, 2546, 2595, 2644, 2693, 2741, 2790, 2838, 2886, 2933, 2981, 3028, 3074, 3121, 3167, 3212, 3257, 3302, 3347, 3391, 3435, 3478, 3521, 3563, 3605, 3647, 3688, 3729, 3769, 3809, 3849, 3888, 3927, 3965, 4003, 4040, 4077, 4114, 4150, 4185, 4220, 4254, 4288, 4321, 4354, 4386, 4418, 4449, 4480, 4510, 4540, 4569, 4598, 4626, 4654, 4681, 4708, 4734, 4759, 4784, 4809, 4832, 4856, 4878, 4900, 4922, 4942, 4963, 4982, 5001, 5020, 5038, 5055, 5072, 5088, 5104, 5119, 5134, 5148, 5161, 5174, 5186, 5198, 5209, 5220, 5230, 5240, 5249, 5258, 5266, 5274, 5281, 5288, 5294, 5300, 5305, 5310, 5315, 5319, 5323, 5326, 5329, 5331, 5333, 5335, 5336, 5337, 5337, 5337, 5337, 5336, 5335, 5333, 5331, 5329, 5326, 5323, 5319, 5315, 5310, 5305, 5300, 5294, 5288, 5281, 5274, 5266, 5258, 5249, 5240, 5230, 5220, 5209, 5198, 5186, 5174, 5161, 5148, 5134, 5119, 5104, 5088, 5072, 5055, 5038, 5020, 5001, 4982, 4963, 4942, 4922, 4900, 4878, 4856, 4832, 4809, 4784, 4759, 4734, 4708, 4681, 4654, 4626, 4598, 4569, 4540, 4510, 4480, 4449, 4418, 4386, 4354, 4321, 4288, 4254, 4220, 4185, 4150, 4114, 4077, 4040, 4003, 3965, 3927, 3888, 3849, 3809, 3769, 3729, 3688, 3647, 3605, 3563, 3521, 3478, 3435, 3391, 3347, 3302, 3257, 3212, 3167, 3121, 3074, 3028, 2981, 2933, 2886, 2838, 2790, 2741, 2693, 2644, 2595, 2546, 2496, 2447, 2397, 2347, 2297, 2247, 2197, 2147, 2097, 2047, 1996, 1946, 1896, 1846, 1796, 1746, 1696, 1647, 1597, 1548, 1499, 1450, 1401, 1353, 1304, 1256, 1208, 1160, 1113, 1065, 1018, 972, 925, 879, 833, 787, 742, 697, 652, 607, 563, 519, 475, 432, 389, 346, 304, 262, 221, 180, 140, 100, 61, 22, -17, -55, -92, -129, -165, -201, -236, -270, -304, -337, -369, -401, -431, -461, -490, -518, -545, -572, -597, -622, -645, -668, -689, -710, -729, -748, -765, -782, -797, -812, -825, -837, -848, -858, -867, -875, -881, -887, -892, -896, -899, -901, -902, -902, -901, -899, -896, -892, -887, -881, -875, -867, -858, -848, -837, -825, -812, -797, -782, -765, -748, -729, -710, -689, -668, -645, -622, -597, -572, -545, -518, -490, -461, -431, -401, -369, -337, -304, -270, -236, -201, -165, -129, -92, -55, -17, 22, 61, 100, 140, 180, 221, 262, 304, 346, 389, 432, 475, 519, 563, 607, 652, 697, 742, 787, 833, 879, 925, 972, 1018, 1065, 1113, 1160, 1208, 1256, 1304, 1353, 1401, 1450, 1499, 1548, 1597, 1647, 1696, 1746, 1796, 1846, 1896, 1946, 1996 }; volatile uint32_t TIM2_period = 500; void TIM2_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseStructure.TIM_Period = TIM2_period; TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void DAC_Config(void) { DAC_InitTypeDef DAC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO; DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(DAC_Channel_2, &DAC_InitStructure); DAC_Cmd(DAC_Channel_2, ENABLE); } void DMA_Config(void) { DMA_InitTypeDef DMA_InitStructure; RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); DMA_DeInit(DMA1_Channel3); DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR12R2_ADDRESS; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)sinTable; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_BufferSize = 256; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel3, &DMA_InitStructure); DMA_Cmd(DMA1_Channel3, ENABLE); } int main(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOE, &GPIO_InitStructure); TIM2_Config(); DAC_Config(); DMA_Config(); while(1) { if(GPIO_ReadInputDataBit(GPIOE, GPIO_Pin_2) == RESET && TIM2_period < 1000) { TIM2_period += 10; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = TIM2_period; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); } if(GPIO_ReadInputDataBit(GPIOE, GPIO_Pin_3) == RESET && TIM2_period > 10) { TIM2_period -= 10; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = TIM2_period; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); } } } void TIM2_IRQHandler(void) { if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_Update); DMA_Cmd(DMA1_Channel3, DISABLE); DMA_SetCurrDataCounter(DMA1_Channel3, 256); DMA_Cmd(DMA1_Channel3, ENABLE); } } ``` 该代码使用DAC和DMA输出正弦波,定时器TIM2控制DMA传输的周期。按键PE2和PE3分别控制TIM2的周期值增大和减小,以改变正弦波的频率。
阅读全文

相关推荐

最新推荐

recommend-type

启明欣欣stm32f103rct6开发板原理图

STM32F103RCT6是一款基于ARM Cortex-M3内核的微控制器,由意法半导体(STM)生产。这款芯片具有高性能、低功耗的特点,适用于各种嵌入式应用,如工业控制、消费电子和通信设备等。启明欣欣STM32F103RCT6开发板提供了...
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR是一款基于ARM Cortex-M3内核的32位微控制器,由意法半导体(STMicroelectronics)生产。这款微控制器适用于一系列STM32F103型号,包括STM32F103RE、STM32F103ZE、STM32F103VE等。它拥有丰富的特性,...
recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

1. **STM32F103**:STM32F103是STMicroelectronics生产的一款基于ARM Cortex-M3内核的微控制器。它具有高性能、低功耗的特点,广泛应用于各种嵌入式系统设计中。在本实验中,它被用来控制LED的亮灭。 2. **GPIO ...
recommend-type

WindowsQwen2.5VL环境搭建-执行脚本

WindowsQwen2.5VL环境搭建-执行脚本
recommend-type

VMware虚拟机安装教程

vmware虚拟机安装教程
recommend-type

Cyclone IV硬件配置详细文档解析

Cyclone IV是Altera公司(现为英特尔旗下公司)的一款可编程逻辑设备,属于Cyclone系列FPGA(现场可编程门阵列)的一部分。作为硬件设计师,全面了解Cyclone IV配置文档至关重要,因为这直接影响到硬件设计的成功与否。配置文档通常会涵盖器件的详细架构、特性和配置方法,是设计过程中的关键参考材料。 首先,Cyclone IV FPGA拥有灵活的逻辑单元、存储器块和DSP(数字信号处理)模块,这些是设计高效能、低功耗的电子系统的基石。Cyclone IV系列包括了Cyclone IV GX和Cyclone IV E两个子系列,它们在特性上各有侧重,适用于不同应用场景。 在阅读Cyclone IV配置文档时,以下知识点需要重点关注: 1. 设备架构与逻辑资源: - 逻辑单元(LE):这是构成FPGA逻辑功能的基本单元,可以配置成组合逻辑和时序逻辑。 - 嵌入式存储器:包括M9K(9K比特)和M144K(144K比特)两种大小的块式存储器,适用于数据缓存、FIFO缓冲区和小规模RAM。 - DSP模块:提供乘法器和累加器,用于实现数字信号处理的算法,比如卷积、滤波等。 - PLL和时钟网络:时钟管理对性能和功耗至关重要,Cyclone IV提供了可配置的PLL以生成高质量的时钟信号。 2. 配置与编程: - 配置模式:文档会介绍多种配置模式,如AS(主动串行)、PS(被动串行)、JTAG配置等。 - 配置文件:在编程之前必须准备好适合的配置文件,该文件通常由Quartus II等软件生成。 - 非易失性存储器配置:Cyclone IV FPGA可使用非易失性存储器进行配置,这些配置在断电后不会丢失。 3. 性能与功耗: - 性能参数:配置文档将详细说明该系列FPGA的最大工作频率、输入输出延迟等性能指标。 - 功耗管理:Cyclone IV采用40nm工艺,提供了多级节能措施。在设计时需要考虑静态和动态功耗,以及如何利用各种低功耗模式。 4. 输入输出接口: - I/O标准:支持多种I/O标准,如LVCMOS、LVTTL、HSTL等,文档会说明如何选择和配置适合的I/O标准。 - I/O引脚:每个引脚的多功能性也是重要考虑点,文档会详细解释如何根据设计需求进行引脚分配和配置。 5. 软件工具与开发支持: - Quartus II软件:这是设计和配置Cyclone IV FPGA的主要软件工具,文档会介绍如何使用该软件进行项目设置、编译、仿真以及调试。 - 硬件支持:除了软件工具,文档还可能包含有关Cyclone IV开发套件和评估板的信息,这些硬件平台可以加速产品原型开发和测试。 6. 应用案例和设计示例: - 实际应用:文档中可能包含针对特定应用的案例研究,如视频处理、通信接口、高速接口等。 - 设计示例:为了降低设计难度,文档可能会提供一些设计示例,它们可以帮助设计者快速掌握如何使用Cyclone IV FPGA的各项特性。 由于文件列表中包含了三个具体的PDF文件,它们可能分别是针对Cyclone IV FPGA系列不同子型号的特定配置指南,或者是覆盖了特定的设计主题,例如“cyiv-51010.pdf”可能包含了针对Cyclone IV E型号的详细配置信息,“cyiv-5v1.pdf”可能是版本1的配置文档,“cyiv-51008.pdf”可能是关于Cyclone IV GX型号的配置指导。为获得完整的技术细节,硬件设计师应当仔细阅读这三个文件,并结合产品手册和用户指南。 以上信息是Cyclone IV FPGA配置文档的主要知识点,系统地掌握这些内容对于完成高效的设计至关重要。硬件设计师必须深入理解文档内容,并将其应用到实际的设计过程中,以确保最终产品符合预期性能和功能要求。
recommend-type

【WinCC与Excel集成秘籍】:轻松搭建数据交互桥梁(必读指南)

# 摘要 本论文深入探讨了WinCC与Excel集成的基础概念、理论基础和实践操作,并进一步分析了高级应用以及实际案例。在理论部分,文章详细阐述了集成的必要性和优势,介绍了基于OPC的通信机制及不同的数据交互模式,包括DDE技术、VBA应用和OLE DB数据访问方法。实践操作章节中,着重讲解了实现通信的具体步骤,包括DDE通信、VBA的使
recommend-type

华为模拟互联地址配置

### 配置华为设备模拟互联网IP地址 #### 一、进入接口配置模式并分配IP地址 为了使华为设备能够模拟互联网连接,需先为指定的物理或逻辑接口设置有效的公网IP地址。这通常是在广域网(WAN)侧执行的操作。 ```shell [Huawei]interface GigabitEthernet 0/0/0 # 进入特定接口配置视图[^3] [Huawei-GigabitEthernet0/0/0]ip address X.X.X.X Y.Y.Y.Y # 设置IP地址及其子网掩码,其中X代表具体的IPv4地址,Y表示对应的子网掩码位数 ``` 这里的`GigabitEth
recommend-type

Java游戏开发简易实现与地图控制教程

标题和描述中提到的知识点主要是关于使用Java语言实现一个简单的游戏,并且重点在于游戏地图的控制。在游戏开发中,地图控制是基础而重要的部分,它涉及到游戏世界的设计、玩家的移动、视图的显示等等。接下来,我们将详细探讨Java在游戏开发中地图控制的相关知识点。 1. Java游戏开发基础 Java是一种广泛用于企业级应用和Android应用开发的编程语言,但它的应用范围也包括游戏开发。Java游戏开发主要通过Java SE平台实现,也可以通过Java ME针对移动设备开发。使用Java进行游戏开发,可以利用Java提供的丰富API、跨平台特性以及强大的图形和声音处理能力。 2. 游戏循环 游戏循环是游戏开发中的核心概念,它控制游戏的每一帧(frame)更新。在Java中实现游戏循环一般会使用一个while或for循环,不断地进行游戏状态的更新和渲染。游戏循环的效率直接影响游戏的流畅度。 3. 地图控制 游戏中的地图控制包括地图的加载、显示以及玩家在地图上的移动控制。Java游戏地图通常由一系列的图像层构成,比如背景层、地面层、对象层等,这些图层需要根据游戏逻辑进行加载和切换。 4. 视图管理 视图管理是指游戏世界中,玩家能看到的部分。在地图控制中,视图通常是指玩家的视野,它需要根据玩家位置动态更新,确保玩家看到的是当前相关场景。使用Java实现视图管理时,可以使用Java的AWT和Swing库来创建窗口和绘制图形。 5. 事件处理 Java游戏开发中的事件处理机制允许对玩家的输入进行响应。例如,当玩家按下键盘上的某个键或者移动鼠标时,游戏需要响应这些事件,并更新游戏状态,如移动玩家角色或执行其他相关操作。 6. 游戏开发工具 虽然Java提供了强大的开发环境,但通常为了提升开发效率和方便管理游戏资源,开发者会使用一些专门的游戏开发框架或工具。常见的Java游戏开发框架有LibGDX、LWJGL(轻量级Java游戏库)等。 7. 游戏地图的编程实现 在编程实现游戏地图时,通常需要以下几个步骤: - 定义地图结构:包括地图的大小、图块(Tile)的尺寸、地图层级等。 - 加载地图数据:从文件(如图片或自定义的地图文件)中加载地图数据。 - 地图渲染:在屏幕上绘制地图,可能需要对地图进行平滑滚动(scrolling)、缩放(scaling)等操作。 - 碰撞检测:判断玩家或其他游戏对象是否与地图中的特定对象发生碰撞,以决定是否阻止移动等。 - 地图切换:实现不同地图间的切换逻辑。 8. JavaTest01示例 虽然提供的信息中没有具体文件内容,但假设"javaTest01"是Java项目或源代码文件的名称。在这样的示例中,"javaTest01"可能包含了一个或多个类(Class),这些类中包含了实现地图控制逻辑的主要代码。例如,可能存在一个名为GameMap的类负责加载和渲染地图,另一个类GameController负责处理游戏循环和玩家输入等。 通过上述知识点,我们可以看出实现一个简单的Java游戏地图控制不仅需要对Java语言有深入理解,还需要掌握游戏开发相关的概念和技巧。在具体开发过程中,还需要参考相关文档和API,以及可能使用的游戏开发框架和工具的使用指南。
recommend-type

【超市销售数据深度分析】:从数据库挖掘商业价值的必经之路

# 摘要 本文全面探讨了超市销售数据分析的方法与应用,从数据的准备、预处理到探索性数据分析,再到销售预测与市场分析,最后介绍高级数据分析技术在销售领域的应用。通过详细的章节阐述,本文着重于数据收集、清洗、转换、可视化和关联规则挖掘等关键步骤。