LSTSVR最速梯度下降matlab算法
时间: 2023-07-08 21:49:26 浏览: 167
以下是在MATLAB中实现LSTSVR最速梯度下降算法的示例代码:
```matlab
function [w, b, beta, obj] = lstsvr_sgd(X, y, C, epsilon, eta, max_iter)
% X: training data, n x d matrix
% y: response variable, n x 1 vector
% C: regularization parameter
% epsilon: tolerance for stopping criterion
% eta: learning rate
% max_iter: maximum number of iterations
% w, b: linear coefficients
% beta: support vector coefficients
% obj: objective function values at each iteration
% Initialization
[n, d] = size(X);
w = zeros(d, 1);
b = 0;
beta = zeros(n, 1);
obj = zeros(max_iter, 1);
% Main loop
for t = 1:max_iter
% Choose a random sample
idx = randi(n);
x = X(idx, :)';
y_ = y(idx);
% Compute gradient
if abs(beta(idx)) < epsilon
grad_w = w + C * x * y_;
grad_b = y_;
else
grad_w = w + C * (x * y_ - X' * (beta .* y));
grad_b = 0;
end
% Update parameters
w = w - eta * grad_w;
b = b - eta * grad_b;
beta(idx) = beta(idx) + eta * y_ * (x' * w + b - y_(idx));
% Compute objective function
obj(t) = norm(w)^2 + C * sum(beta.^2);
end
end
```
其中,X是训练数据矩阵,y是响应变量向量,C是正则化参数,epsilon是停止准则的容忍度,eta是学习率,max_iter是最大迭代次数。函数输出w、b、beta和obj,分别为线性系数、截距、支持向量系数和每次迭代的目标函数值。在每次迭代中,随机选择一个样本计算梯度并更新参数。如果该样本是支持向量,则使用支持向量回归的梯度计算方法,否则使用普通的最小二乘回归的梯度计算方法。
阅读全文