使用pytorch写一段四元数卷积
时间: 2023-10-24 20:10:15 浏览: 105
在 PyTorch 中实现四元数卷积的代码如下:
```python
import torch
import torch.nn as nn
class QuaternionConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(QuaternionConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
def forward(self, x):
x = torch.cat((x, torch.zeros_like(x)), dim=1)
return self.conv(x)
```
其中,`in_channels` 为输入通道数,`out_channels` 为输出通道数,`kernel_size` 为卷积核的尺寸,其余参数可参考 PyTorch 的 `nn.Conv2d` 文档。
相关问题
用pytorch写一段四元数卷积
下面是一段用 PyTorch 实现四元数卷积的代码示例:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class QuaternionConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True):
super(QuaternionConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.bias = bias
# 四元数卷积的权值是复数,因此需要 4 倍输入通道数
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels * 4, kernel_size, kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input):
# 将四元数展开为 4 个通道
input = input.reshape(input.size(0), self.in_channels, 4, input.size(2), input.size(3))
real, imag = input[:, :, 0], input[:, :, 1:]
real, imag = real.permute(0, 2, 1, 3, 4), imag.permute(0, 2, 1, 3, 4)
# 实数部分与虚数部分分别卷积
real_out = F.conv2d(real, self.weight[:, :self.in_channels, :, :], stride=self.stride, padding=self.padding)
imag_out = F.conv2d(imag, self.weight[:, self.in_channels:, :, :], stride=self.stride, padding=self.padding)
# 将实数部分与虚数部分合并为四元数
out = torch.stack([real_out, imag_out[
用pytorch写一段完整的四元数卷积
以下是使用PyTorch实现的四元数卷积代码示例:
```python
import torch
import torch.nn as nn
class QuaternionConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1):
super(QuaternionConv2d, self).__init__()
self.conv_real = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
self.conv_i = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
self.conv_j = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
self.conv_k = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups)
def forward(self, x_real, x_i, x_j, x_k):
out_real = self.conv_real(x_real) - self.conv_i(x_i) - self.conv_j(x_j) - self.conv_k(x_k)
out_i = self.conv_real(x_i) + self.conv_i(x_real) + self.conv_j(x_k) - self.conv_k(x_j)
out_j = self.conv_real(x_j) - self.conv_i(x_k) + self.conv_j(x_real) + self.conv_k(x_i)
out_k = self.conv_real(x_k) + self.conv_i(x_j) - self.conv_j(x_i) + self.conv_k(x_real)
return out_real, out_i, out_j, out_k
```
这是一个实现四元数卷积的简单的PyTorch模块,它继承了PyTorch中的nn.Module类。该模块有四个输入张量x_real、x_i、x_j和x_k,代表真实部分、虚部i、虚部j和虚部k。四个卷积核按照四元数乘法规则进行卷积操作,并返回四个输出张量out_real、out_i、out_j和out_k,代表四元数卷积的结果。
您可以通过在PyTorch的nn.Sequential容器中使用该模块来构建四元数卷积网络。
阅读全文