matlab中牛顿下山法实例,非线性方程的数值解法牛顿下山法matlab
时间: 2023-06-22 17:23:52 浏览: 122
非线性方程数值解程序,非线性方程的数值解法,matlab
5星 · 资源好评率100%
下面是一个使用牛顿下山法求解非线性方程的matlab代码示例:
```matlab
function [x, iter] = newton_downhill(f, x0, tol)
% f: 目标函数
% x0: 初始点
% tol: 容差
maxiter = 100; % 最大迭代次数
iter = 0; % 迭代次数
x = x0;
fx = feval(f, x); % 计算目标函数值
while norm(fx) > tol && iter < maxiter
iter = iter + 1;
% 计算牛顿下山方向
dfx = jacobian(f, x);
d2fx = hessian(f, x);
d = -inv(d2fx) * dfx;
% 计算步长
alpha = 1;
while feval(f, x + alpha*d) > fx
alpha = alpha / 2;
end
% 更新x的值
x = x + alpha*d;
fx = feval(f, x);
end
end
```
其中,`f`是目标函数,`x0`是初始点,`tol`是容差。在迭代过程中,首先计算目标函数在当前点的值`fx`,然后计算牛顿下山方向`d`,接着计算步长`alpha`,最后更新`x`的值。迭代终止的条件是目标函数值小于容差或者达到最大迭代次数。
阅读全文