单片机的ADC采样能采样输出的电阻信号嘛

时间: 2024-05-21 12:13:47 浏览: 11
单片机的ADC通常只能采样电压信号,因此需要使用电阻分压电路将电阻信号转换为电压信号进行采样。具体来说,可以将待采样的电阻与一个已知电阻串联,将串联电阻接入一个电压源,然后将两个电阻串联节点处的电压作为ADC的输入信号进行采样即可。采样值可以通过计算公式转换为对应的电阻值。需要注意的是,电阻分压电路会影响信号的精度和带宽,需要根据实际应用进行设计和优化。
相关问题

lm358做adc采样电路

LM358是一种双运算放大器,可以用来进行ADC采样电路设计。下面是一个简单的ADC采样电路设计示例: 首先需要将待采样的模拟信号通过一个电阻分压网络降压至LM358的输入电压范围内(通常为0V~VCC-2V)。 然后将LM358的一个运算放大器配置为比较器,将分压后的信号与一个参考电压(可以使用一个电位器调节)进行比较。当输入信号超过参考电压时,比较器输出高电平;反之输出低电平。 最后将比较器的输出接入单片机的GPIO口,通过程序读取GPIO口电平状态即可实现ADC采样。 需要注意的是,LM358的输出电压范围通常为0V~VCC-1.5V,因此需要根据具体情况来选择参考电压的大小,以充分利用ADC的动态范围。同时,由于LM358的输入偏移电压较大,需要对输入信号进行直流偏置以避免误差。

已知ntc热敏电阻为3950k,上拉10k电阻,adc采样为10bit。写一段程序采集ntc温度值,请用普通单片机C语言编写,不能用Arduino

假设采集的NTC热敏电阻与上拉电阻组成电压分压电路,ADC采样引脚连接到电压分压电路输出端,以下给出一个简单的程序示例: ```c #include <stdint.h> #include <avr/io.h> #include <util/delay.h> #define NTC_PORT PORTB #define NTC_PIN PINB #define NTC_DDR DDRB #define NTC_BIT PB0 #define ADC_PORT PORTC #define ADC_PIN PINC #define ADC_DDR DDRC #define ADC_BIT PC0 void adc_init(void) { // 设置 ADC 基准电压为 AVCC,采样分辨率为 10 bit ADMUX |= (1 << REFS0); ADCSRA |= (1 << ADEN) | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); } uint16_t adc_read(uint8_t channel) { // 设置 ADC 通道 ADMUX = (ADMUX & 0xF0) | (channel & 0x0F); // 开始单次采样 ADCSRA |= (1 << ADSC); // 等待采样完成 while (ADCSRA & (1 << ADSC)); // 返回采样结果 return ADC; } int main(void) { // 初始化 NTC 端口为输入,ADC 端口为输出 NTC_DDR &= ~(1 << NTC_BIT); ADC_DDR |= (1 << ADC_BIT); adc_init(); while (1) { // 读取 ADC 采样值 uint16_t adc_value = adc_read(ADC_BIT); // 计算电压值 float voltage = adc_value * 5.0 / 1024.0; // 计算 NTC 电阻值 float ntc_resistance = 10000.0 * voltage / (5.0 - voltage); // 计算 NTC 温度值 float ntc_temperature = 1.0 / (1.0 / 298.15 + 1.0 / 3950.0 * log(ntc_resistance / 10000.0)) - 273.15; // 打印温度值 printf("NTC temperature: %.1f C\r\n", ntc_temperature); // 延时一段时间 _delay_ms(1000); } return 0; } ``` 程序中使用了 AVR 单片机的 ADC 功能,需要注意 ADC 通道和分辨率的设置。计算 NTC 温度值时,采用的是 Steinhart-Hart 公式,需要根据实际电路条件进行调整。此外,还需要根据具体的单片机型号和编译器进行相应的修改。

相关推荐

最新推荐

recommend-type

一种基于单片机电压采样的功率因数在线检测

3. 单片机输入输出电路设计:单片机输入输出电路主要是对传感器检测的电压信号进行处理,主要包括信号转换、计算、存储及功率因数的显示和数据传输。 4. 软件设计:软件设计主要包括 A/D转换、数据的运算、显示和...
recommend-type

基于FPGA的等效时间采样

等效时间采样技术是利用低速的ADC器件对宽带模拟信号的采集,降低了系统对ADC器件的要求以及系统实现的复杂度。本文将介绍等效时间采样的基本原理、系统实现的具体方案。 1. 等效时间采样原理 等效时间采样技术是...
recommend-type

基于51单片机的数字电压表仿真设计

根据设计要求结合硬件电路,在输入模拟信号时采用电阻分压,最终的采样输入电压只有实际输入电压的十分之一,所以在编写程序中要编写一段数据调整程序,其中还应注意硬件显示电路采用了动态扫描显示,在动态扫描显示...
recommend-type

单片机课程设计——基于温度传感器的采样

该系统由信号调理电路、多路开关、采样保持电路、A/D转换器、单片机、电平转换接口和接收端(单片机、PC或其他设备)组成。 6. 软件设计 软件设计是指为单片机和PC设计的软件。该软件设计分为两个部分:单片机终端...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依