import tensorflow as tf import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('E:\学习\python\data2.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback]) # 导出损失函数曲线 plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.savefig('loss_curve.png')

时间: 2024-03-07 08:53:24 浏览: 25
这段代码使用TensorFlow和Keras框架,用一个神经网络模型来预测Excel文件中的数据。首先,通过pandas库读取Excel文件的数据,并使用sklearn库的MinMaxScaler函数进行数据归一化处理。然后,使用train_test_split函数将数据集划分为训练集和验证集。接着,定义一个包含4个全连接层的神经网络模型,并使用Adam优化器对模型进行编译。在训练模型时,使用LearningRateScheduler回调函数对学习率进行衰减。最后,使用matplotlib库绘制损失函数随着训练轮数的变化曲线。
相关问题

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.utils import shuffle from sklearn.preprocessing import scale df = pd.read_csv("C:\\boston.csv",header=0) ds = df.values from sklearn.datasets import load_boston boston = load_boston() X = boston.data y = boston.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential([ Dense(64, activation='relu', input_shape=(X_train.shape[1],)), Dense(64, activation='relu'), Dense(64, activation='relu'), Dense(1) ]) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(X_train, y_train, validation_split=0.1, epochs=100, batch_size=32) from sklearn.metrics import mean_squared_error y_pred = model.predict(x_test)mse = mean_squared_error(y_test, y_pred)print('MSE:’, mse) import matplotlib.pyplot as plt plt.plot(history.history['accuracy'], label='train') plt.plot(history.history['val_accuracy'], label='validation') plt.legend() plt.show()

这段代码使用TensorFlow和Keras实现了一个神经网络模型,用于预测波士顿房价。以下是代码的解释: 首先,导入必要的库和模块: ``` import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.utils import shuffle from sklearn.preprocessing import scale ``` 然后,读取波士顿房价数据集并对其进行预处理: ``` df = pd.read_csv("C:\\boston.csv",header=0) ds = df.values ``` 接着,从sklearn.datasets模块中加载波士顿房价数据集,并将其分为训练集和测试集: ``` from sklearn.datasets import load_boston boston = load_boston() X = boston.data y = boston.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 对训练集和测试集进行标准化处理: ``` from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ``` 定义一个包含4个Dense层的神经网络模型: ``` from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential([ Dense(64, activation='relu', input_shape=(X_train.shape[1],)), Dense(64, activation='relu'), Dense(64, activation='relu'), Dense(1) ]) ``` 编译模型并训练: ``` model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(X_train, y_train, validation_split=0.1, epochs=100, batch_size=32) ``` 使用模型对测试集进行预测,并计算均方误差: ``` from sklearn.metrics import mean_squared_error y_pred = model.predict(x_test) mse = mean_squared_error(y_test, y_pred) print('MSE:’, mse) ``` 最后,绘制模型的训练和验证准确率曲线: ``` import matplotlib.pyplot as plt plt.plot(history.history['accuracy'], label='train') plt.plot(history.history['val_accuracy'], label='validation') plt.legend() plt.show() ```

import tensorflow as tf import pickle import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('D:\python-learn\data.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback])文件中的数据是怎么样进行训练的

这段代码使用了TensorFlow框架中的Sequential模型来构建神经网络模型,并使用均方误差(MSE)作为损失函数进行训练。训练数据和验证数据是通过调用Scikit-learn库中的train_test_split()函数进行划分的,其中训练数据占90%,验证数据占10%。在训练之前,还对数据进行了归一化处理,使得数据的范围都在0到1之间。训练过程中使用了学习率衰减技术,每50个epochs将学习率降低一个数量级,以提高模型的训练效果。最后,训练过程中的损失和验证损失被保存在history变量中,可以使用matplotlib库来绘制训练过程中损失的变化趋势。

相关推荐

最新推荐

recommend-type

yolov5-face-landmarks-opencv

yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的。 本套程序根据https://github.com/deepcam-cn/yolov5-face 里提供的训练模型.pt文件。转换成onnx文件, 然后使用opencv读取onnx文件做前向推理,onnx文件从百度云盘下载,下载 链接:https://pan.baidu.com/s/14qvEOB90CcVJwVC5jNcu3A 提取码:duwc 下载完成后,onnx文件存放目录里,C++版本的主程序是main_yolo.cpp,Python版本的主程序是main.py 。此外,还有一个main_export_onnx.py文件,它是读取pytorch训练模型.pt文件生成onnx文件的。 如果你想重新生成onnx文件,不能直接在该目录下运行的,你需要把文件拷贝到https://github.com/deepcam-cn/yolov5-face 的主目录里运行,就可以生成onnx文件。
recommend-type

setuptools-0.6c8-py2.5.egg

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

5-3.py

5-3
recommend-type

Java八股文.pdf

"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它指的是一系列在Java编程面试中经常被问到的基础知识点、理论概念和技术细节。这个术语的命名来源于中国古代科举考试中的“八股文”,一种具有固定格式和套路的文章形式。 在Java编程的上下文中,"Java八股文"通常包括以下几个方面:"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它指的是一系列在Java编程面试中经常被问到的基础知识点、理论概念和技术细节。这个术语的命名来源于中国古代科举考试中的“八股文”,一种具有固定格式和套路的文章形式。 在Java编程的上下文中,"Java八股文"通常包括以下几个方面:"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它指的是一系列在Java编程面试中经常被问到的基础知识点、理论概念和技术细节。这个术语的命名来源于中国古代科举考试中的“八股文”,一种具有固定格式和套路的文章形式。 在Java编程的上下文中,"Java八股文"通常包括以下几个方面:"Java八股文"是一个在程序员社群中流行的术语,特别是在准备技术面试时。它
recommend-type

麦肯锡咨询顾问必备宝典.ppt

麦肯锡咨询顾问必备宝典.ppt
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。