MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_second = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=eta_second)) if torch.cuda.is_available(): print(log_msg.format(i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format(i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time()
时间: 2024-02-10 15:29:29 浏览: 115
这段代码是`MetricLogger`类的`log_every`方法的一部分,用于在迭代过程中记录指标并打印日志。
在这段代码中,通过一个循环迭代`iterable`对象,对每个迭代进行以下操作:
- 更新数据加载时间 `data_time`
- 使用`yield`语句返回迭代对象 `obj`
- 更新迭代时间 `iter_time`
- 如果达到了打印日志的频率(`print_freq`)或者已经到达迭代的最后一次,执行以下操作:
- 计算预计剩余时间 `eta_second`,即平均每个迭代所花费的时间乘以剩余迭代次数
- 将预计剩余时间转换为字符串表示 `eta_string`
- 根据CUDA是否可用,选择打印日志的方式:
- 如果CUDA可用,使用`log_msg`格式化字符串打印日志,包括迭代计数、总迭代次数、预计剩余时间、当前指标的字符串表示、迭代时间、数据加载时间和当前最大内存使用量
- 如果CUDA不可用,使用`log_msg`格式化字符串打印日志,不包括最大内存使用量
- 更新迭代计数 `i`
- 更新结束时间 `end`
通过这段代码,可以在每个迭代步骤中记录指标并根据指定的频率打印日志。日志中包含了迭代计数、总迭代次数、预计剩余时间、当前指标的字符串表示、迭代时间和数据加载时间。如果CUDA可用,还会打印当前的最大内存使用量。这些日志信息有助于实时监控训练的进展和指标变化。
阅读全文