nextState_batch = torch.Tensor(nextState_batch)
时间: 2024-06-06 07:08:20 浏览: 106
As an AI language model, I cannot provide a specific answer without context. However, I can explain that this line of code is converting a list or array of next state values into a PyTorch tensor. This allows the data to be efficiently processed using PyTorch's built-in functions and methods for tensor operations.
相关问题
def update(self, batch_size): if len(self.buffer) < batch_size: return self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay) state, action, reward, next_state, done = self.buffer.sample(batch_size) state = torch.FloatTensor(state)[..., :-1] action = torch.LongTensor(action) reward = torch.FloatTensor(reward) done = torch.FloatTensor(done) next_state = torch.FloatTensor(next_state)[..., :-1] q_values = self.network(state) next_q_values = self.target_network(next_state) q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) next_q_value = next_q_values.max(1)[0] expected_q_value = reward + self.gamma * next_q_value * (1 - done) loss = self.criteria(q_value, expected_q_value.detach()) self.optimizer.zero_grad() loss.backward() self.optimizer.step()
你的第二个问题是关于一个更新函数。这个函数用于更新深度强化学习模型的参数。
首先,函数检查经验缓存(buffer)中的样本数量是否小于批次大小(batch_size),如果是,则直接返回。接下来,函数根据epsilon的最小值和衰减率更新epsilon的值。
然后,函数从经验缓存中随机采样出一个批次的样本,包括状态(state),动作(action),奖励(reward),下一个状态(next_state)和完成标志(done)。
接着,函数将状态和下一个状态转换为张量,并且去除最后一个元素。
然后,函数通过当前网络(network)计算当前状态对应的Q值(q_values),并通过目标网络(target_network)计算下一个状态对应的Q值(next_q_values)。
接下来,函数根据当前状态的Q值和动作,选择对应的Q值(q_value)。
然后,函数计算下一个状态的最大Q值(next_q_value)。
接着,函数根据奖励、折扣因子(gamma)、下一状态的最大Q值和完成标志(done),计算期望Q值(expected_q_value)。
然后,函数计算损失(loss),通过均方差损失函数(criteria)和期望Q值的离散程度进行计算。接着,函数将优化器(optimizer)的梯度置零,进行反向传播计算梯度,并更新模型的参数。
这样,模型的参数就得到了更新。
import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()
这段代码使用了PyTorch、OpenCV等库,从模型模块中导入了parsingNet模型,从常用工具模块中导入了merge_config和dist_print等函数。代码还使用了LaneTestDataset数据集和culane_row_anchor、tusimple_row_anchor常量。在if __name__ == "__main__":中,代码设置了torch.backends.cudnn.benchmark为True,合并了配置信息args和cfg,并输出了“start testing...”信息。然后根据配置信息中的backbone选择了不同的通道数,并初始化了一个parsingNet模型。
阅读全文