对图像(自己选择图像)实现 类间方差阈值分割技术。
时间: 2024-05-16 10:15:28 浏览: 87
好的,类间方差阈值分割技术是一种常用的图像分割方法,可以将图像分成两个部分,使得两部分的类间方差最大。以下是实现步骤:
1. 读取图像并转为灰度图像
```python
import cv2
import numpy as np
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
2. 计算图像的灰度直方图
```python
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
```
3. 计算类间方差
```python
total_pixels = gray.shape[0] * gray.shape[1]
max_variance = 0
threshold = 0
for i in range(256):
w0 = np.sum(hist[:i]) / total_pixels
w1 = 1 - w0
mean0 = np.sum(np.multiply(hist[:i], np.arange(i))) / (w0 * total_pixels)
mean1 = np.sum(np.multiply(hist[i:], np.arange(i, 256))) / (w1 * total_pixels)
variance = w0 * w1 * (mean0 - mean1) ** 2
if variance > max_variance:
max_variance = variance
threshold = i
```
4. 对图像进行二值化
```python
binary = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)[1]
```
5. 显示结果
```python
cv2.imshow('Original', img)
cv2.imshow('Binary', binary)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
完整代码如下:
```python
import cv2
import numpy as np
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
total_pixels = gray.shape[0] * gray.shape[1]
max_variance = 0
threshold = 0
for i in range(256):
w0 = np.sum(hist[:i]) / total_pixels
w1 = 1 - w0
mean0 = np.sum(np.multiply(hist[:i], np.arange(i))) / (w0 * total_pixels)
mean1 = np.sum(np.multiply(hist[i:], np.arange(i, 256))) / (w1 * total_pixels)
variance = w0 * w1 * (mean0 - mean1) ** 2
if variance > max_variance:
max_variance = variance
threshold = i
binary = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)[1]
cv2.imshow('Original', img)
cv2.imshow('Binary', binary)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文