(1)定时器通过系统时钟实现 TC 累加,达到定时记数的目的,请画出定时器的基本计数框图。

时间: 2024-02-16 18:03:54 浏览: 46
以下是一个简单的定时器的基本计数框图: ``` +-----------------+ | | | System Clock | | | +--------+--------+ | | Reset | +--------v--------+ | | | Counter TC | | | +--------+--------+ | | Overflow | +--------v--------+ | | | Timer Interrupt | | | +-----------------+ ``` 定时器通过系统时钟进行累加,达到计时的目的。每当计数器达到设定的计数值时,计数器会触发一个计时器中断。当计数器溢出时,可以通过计数器的溢出标志位进行判断,然后进行相应的处理。当然,这只是一个简单的定时器框图,实际情况可能会更加复杂。
相关问题

定时器0通过系统时钟实现 TC 累加,达到定时记数的目的,请画出定时器的基本计数框图。

下面是定时器0的基本计数框图: ``` +------------+ +------------------+ +-----------------+ | | | | | | Clock Source -->| 时钟分频器 |-->+--> 计数器累加器 TC |-->+--> 中断/触发输出 | | | | | | | +------------+ +------------------+ +-----------------+ ``` 定时器0的工作原理如下: 1. 定时器0的时钟源可以选择系统时钟或外部输入时钟,这里选择系统时钟。 2. 系统时钟经过时钟分频器分频后作为定时器0的计数时钟源。 3. 定时器0的计数器累加器 TC 从零开始计数,每个时钟周期加一。 4. 当计数器累加器 TC 的值达到设定的计时值时,定时器0会产生中断/触发输出信号,可以用来触发其他模块的操作。

某系统中利用定时器/计数器О进行系统定时,完成下面各部分内容(Fpclk=11.0592MHZ)。 (1)定时器通过系统时钟实现TC累加,达到定时记数的目的,请画出定时器的基本计数框图。 (2)写出定时器时钟为2分频,实现定时1秒时长的定时器初始化程序。 (3)写出定时器时钟不分频的情况下,每两秒时长利用外部匹配О实现匹配输出为方波的初始化程序。 (4)写出定时器时钟为不分频,测量下图脉冲宽度的程序段。

1. 定时器的基本计数框图如下所示: ``` +---------+ +------+ Fpclk -| PCLKSEL |-|--> PCLK | | +---------+ | | +------------+ +-->| TC |-->| | | | | Counter | +------+ | | +------------+ ``` 定时器的计数器 TC 通过 PCLKSEL 寄存器选择的时钟源 PCLK 进行累加,从而实现定时计数的目的。 2. 定时器时钟为2分频,实现定时1秒时长的定时器初始化程序如下所示(假设定时器为 TIMER0): ``` // 使能 TIMER0 的时钟 PCLKSEL0 |= (1 << 2); // 将 TIMER0 的时钟分频系数设置为 2 TIMER0_PR = 1; // 将 TIMER0 的计数器清零 TIMER0_TC = 0; // 将 TIMER0 的匹配寄存器 MR0 设置为 1 秒钟的计数值 TIMER0_MR0 = 11059200; // 将 TIMER0 的匹配控制寄存器 MCR 设置为清空计数器和产生中断 TIMER0_MCR = (1 << 1) | (1 << 0); // 使能 TIMER0 的中断 NVIC_EnableIRQ(TIMER0_IRQn); // 启动 TIMER0 TIMER0_TCR = (1 << 0); ``` 3. 定时器时钟不分频的情况下,每两秒时长利用外部匹配О实现匹配输出为方波的初始化程序如下所示(同样假设定时器为 TIMER0): ``` // 使能 TIMER0 的时钟 PCLKSEL0 |= (1 << 2); // 将 TIMER0 的计数器清零 TIMER0_TC = 0; // 将 TIMER0 的匹配寄存器 MR0 设置为计数值为 Fpclk * 2 秒的计数值 TIMER0_MR0 = 22118400; // 将 TIMER0 的匹配控制寄存器 MCR 设置为清空计数器和产生外部匹配信号 TIMER0_MCR = (1 << 1) | (1 << 4); // 使能 TIMER0 的外部匹配信号 PINSEL1 |= (1 << 12); // 启动 TIMER0 TIMER0_TCR = (1 << 0); ``` 4. 定时器时钟为不分频,测量脉冲宽度的程序段如下所示: ``` // 使能 TIMER0 的时钟 PCLKSEL0 |= (1 << 2); // 将 TIMER0 的计数器清零 TIMER0_TC = 0; // 等待上升沿触发 while ((FIO0PIN & (1 << 0)) == 0); // 将 TIMER0 的匹配寄存器 MR0 设置为计数值为 0xFFFFFFFF,即最大值 TIMER0_MR0 = 0xFFFFFFFF; // 将 TIMER0 的匹配控制寄存器 MCR 设置为清空计数器和产生中断 TIMER0_MCR = (1 << 1) | (1 << 0); // 使能 TIMER0 的中断 NVIC_EnableIRQ(TIMER0_IRQn); // 启动 TIMER0 TIMER0_TCR = (1 << 0); // 等待中断触发 while (!timer0_interrupt_flag); // 关闭 TIMER0 TIMER0_TCR = 0; // 测量脉冲宽度 pulse_width = TIMER0_CR0; ``` 注意,以上代码仅供参考,具体实现方式可能因芯片型号、开发环境等因素而异。

相关推荐

最新推荐

recommend-type

STM32定时器做外部脉冲信号计数器用

在配置定时器外部时钟模式时,需要设置定时器时钟的分频比为1,以便保证定时器时钟频率与数字滤波器采样频率之间的同步。 知识点7:TIM_TIxExternalClockConfig函数 在使用STM32单片机的定时器外部时钟功能时,...
recommend-type

使用OpenCV实现道路车辆计数的使用方法

在本文中,我们将深入探讨如何利用OpenCV库来实现道路车辆计数。OpenCV是一个强大的计算机视觉库,广泛...通过不断优化这些步骤,可以实现高效且准确的车辆计数系统,这对于交通监控、流量分析等应用场景具有重要意义。
recommend-type

STM32定时器TIM3程序

结论:STM32定时器TIM3程序是基于STM32微控制器的定时器应用程序,主要用于实现定时器的中断控制,通过设置NVIC中断分组、初始化定时器TIM3、使能中断请求等步骤,实现了10Khz的计数频率,计数到5000为500ms。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S