将下列自注意力机制的pytorch代码转换为多头自注意力机制的pytorch代码:
时间: 2023-12-03 08:58:39 浏览: 132
Pytorch 实现注意力机制
以下是将自注意力机制代码转换为多头自注意力机制代码的示例:
```python
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads*self.head_dim, embed_size)
def forward(self, values, keys, queries, mask):
# Get number of training examples
N = queries.shape[0]
# Split embedding into self.heads pieces
values = values.reshape(N, -1, self.heads, self.head_dim)
keys = keys.reshape(N, -1, self.heads, self.head_dim)
queries = queries.reshape(N, -1, self.heads, self.head_dim)
# Transpose dimensions
values = values.transpose(1,2) # (N, heads, seq_length, head_dim)
keys = keys.transpose(1,2) # (N, heads, seq_length, head_dim)
queries = queries.transpose(1,2) # (N, heads, seq_length, head_dim)
# Calculate the energy
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
# queries shape: (N, heads, query_len, head_dim),
# keys shape: (N, heads, key_len, head_dim)
# energy shape: (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
# Apply softmax to get attention scores
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
# Multiply attention scores with values to get context vectors
out = torch.einsum("nhql,nlhd->nqhd", [attention, values])
# attention shape: (N, heads, query_len, key_len)
# values shape: (N, heads, key_len, head_dim)
# out shape: (N, query_len, heads, head_dim)
# Concatenate context vectors
out = out.reshape(N, -1, self.heads*self.head_dim)
# Apply final linear layer
out = self.fc_out(out)
return out
```
可以看到,多头自注意力机制的代码在 `__init__` 中添加了用于切分和拼接张量的头数变量 `heads` 和头维度变量 `head_dim`,并在 `forward` 中对输入张量进行分割、转置、矩阵乘法等操作,以实现多头自注意力机制的计算。
阅读全文