利用pytorch实现PSPNet语义分割。
时间: 2023-07-07 12:26:05 浏览: 162
语义分割PSPNet
5星 · 资源好评率100%
好的,下面是一个简单的利用 PyTorch 实现 PSPNet 语义分割的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PSPModule(nn.Module):
def __init__(self, in_channels, pool_sizes=(1, 2, 3, 6)):
super(PSPModule, self).__init__()
self.stages = nn.ModuleList([nn.Sequential(
nn.AdaptiveAvgPool2d(pool_size),
nn.Conv2d(in_channels, in_channels // len(pool_sizes), kernel_size=1),
nn.BatchNorm2d(in_channels // len(pool_sizes)),
nn.ReLU(inplace=True)
) for pool_size in pool_sizes])
self.conv = nn.Conv2d(in_channels * 2, in_channels, kernel_size=1)
self.bn = nn.BatchNorm2d(in_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
h, w = x.size(2), x.size(3)
out = [x]
for stage in self.stages:
out.append(F.interpolate(stage(x), size=(h, w), mode='bilinear', align_corners=True))
out = torch.cat(out, 1)
out = self.conv(out)
out = self.bn(out)
out = self.relu(out)
return out
class PSPNet(nn.Module):
def __init__(self, num_classes=21):
super(PSPNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(512)
self.psp = PSPModule(512)
self.final = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, kernel_size=1)
)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.relu(x)
x = self.psp(x)
x = self.final(x)
x = F.interpolate(x, size=(x.size(2)*8, x.size(3)*8), mode='bilinear', align_corners=True)
return x
```
这里定义了一个 PSPNet 的 PyTorch 模型,包括了 PSPModule 和 PSPNet 两个类。其中 PSPModule 是一个池化模块,用于提取不同尺度的特征信息,PSPNet 是一个完整的 PSPNet 模型,包含了多个卷积层和 PSPModule,最后输出语义分割结果。在 forward() 方法中,我们按照 PSPNet 的结构依次进行卷积操作和 PSPModule 池化操作,最终通过插值方法将输出的结果还原到原始尺寸大小。
你可以使用这个模型进行图像的语义分割任务,具体使用方法和训练方法可以参考 PyTorch 官方文档和论文中的描述。
阅读全文