生成一段matlab对抗网络代码
时间: 2023-09-30 07:12:31 浏览: 112
以下是一个简单的 MATLAB 对抗网络代码:
```matlab
%% 定义生成器和判别器模型
generator = fullyConnectedLayer(10);
discriminator = fullyConnectedLayer(1);
%% 定义损失函数和优化器
loss = @(pred, label) binaryCrossEntropy(pred, label);
generatorOptimizer = adam(0.01, 0.5);
discriminatorOptimizer = adam(0.01, 0.5);
%% 训练对抗网络
for epoch = 1:numEpochs
% 生成器生成一批假样本
z = randn(batchSize, 10);
fakeData = predict(generator, z);
% 判别器评估真假样本并计算损失
realLabels = ones(batchSize, 1);
fakeLabels = zeros(batchSize, 1);
realLoss = loss(predict(discriminator, realData), realLabels);
fakeLoss = loss(predict(discriminator, fakeData), fakeLabels);
discriminatorLoss = realLoss + fakeLoss;
% 判别器更新参数
discriminatorGradients = gradient(discriminator, discriminatorLoss);
discriminator = update(discriminator, discriminatorGradients, discriminatorOptimizer);
% 生成器生成一批假样本并让判别器评估真假
z = randn(batchSize, 10);
fakeData = predict(generator, z);
fakeLabels = ones(batchSize, 1);
generatorLoss = loss(predict(discriminator, fakeData), fakeLabels);
% 生成器更新参数
generatorGradients = gradient(generator, generatorLoss);
generator = update(generator, generatorGradients, generatorOptimizer);
end
```
以上代码实现了一个简单的全连接层生成器和判别器模型,并使用对抗训练的方式不断优化它们。在每个 epoch 中,生成器先生成一批假样本,然后判别器评估真假样本的损失,并更新参数;接着生成器再生成一批假样本并让判别器评估真假,最后生成器更新参数。这样循环往复,不断优化生成器和判别器的表现,从而实现对抗训练。
阅读全文