transformer图像分类生成代码
时间: 2023-07-11 11:06:27 浏览: 102
以下是使用 Transformer 实现图像分类和生成的伪代码:
## 图像分类
1. 导入必要的库和模型
```python
import torch
import torch.nn as nn
from transformers import BertModel
class ImageClassifier(nn.Module):
def __init__(self, num_classes):
super(ImageClassifier, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.classifier = nn.Linear(self.bert.config.hidden_size, num_classes)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
return logits
```
2. 加载数据集
```python
from torch.utils.data import DataLoader
train_dataset = ImageDataset(train_data)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
```
3. 训练模型
```python
model = ImageClassifier(num_classes=num_classes)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, batch in enumerate(train_loader):
input_ids, attention_mask, labels = batch
logits = model(input_ids, attention_mask)
loss = nn.CrossEntropyLoss()(logits, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
4. 评估模型
```python
model.eval()
with torch.no_grad():
for batch in test_loader:
input_ids, attention_mask, labels = batch
logits = model(input_ids, attention_mask)
predictions = torch.argmax(logits, dim=1)
accuracy = torch.sum(predictions == labels) / len(labels)
```
## 图像生成
1. 导入必要的库和模型
```python
import torch
import torch.nn as nn
from transformers import GPT2Model
class ImageGenerator(nn.Module):
def __init__(self, latent_size, img_size):
super(ImageGenerator, self).__init__()
self.latent_size = latent_size
self.img_size = img_size
self.gpt2 = GPT2Model.from_pretrained('gpt2')
self.linear = nn.Linear(self.gpt2.config.hidden_size, self.img_size)
def forward(self, latent_vector):
outputs = self.gpt2(inputs_embeds=latent_vector)
logits = self.linear(outputs[0])
return logits
```
2. 产生随机噪声
```python
import torch
def generate_latent_vector(batch_size, latent_size):
return torch.randn(batch_size, latent_size)
```
3. 生成图像
```python
generator = ImageGenerator(latent_size=latent_size, img_size=img_size)
with torch.no_grad():
latent_vector = generate_latent_vector(batch_size, latent_size)
generated_images = generator(latent_vector)
```
阅读全文