lmmd嵌入到卷积神经网络的keras代码
时间: 2023-10-15 19:04:31 浏览: 122
深度学习卷积神经网络mnist算法代码-keras
下面是使用Keras实现将LMMD嵌入到卷积神经网络的代码:
```
from keras.layers import Input, Conv2D, Flatten, Dense, Activation, Lambda
from keras.models import Model
import keras.backend as K
# 定义输入
input_shape = (28, 28, 1)
inputs = Input(shape=input_shape)
# 定义卷积层
x = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding='same')(inputs)
x = Activation('relu')(x)
x = Conv2D(filters=64, kernel_size=(3, 3), strides=(2, 2), padding='same')(x)
x = Activation('relu')(x)
x = Conv2D(filters=128, kernel_size=(3, 3), strides=(2, 2), padding='same')(x)
x = Activation('relu')(x)
# 将卷积结果展开
x = Flatten()(x)
# 定义LMMD嵌入层
def lmmd_embed(x):
d = K.int_shape(x)[-1]
x = K.reshape(x, (-1, d))
x = K.dot(x, K.transpose(x))
x = K.reshape(x, (-1, d, d))
x -= K.mean(x, axis=1, keepdims=True)
x = K.sum(K.square(x), axis=[1, 2])
return x
x = Lambda(lmmd_embed)(x)
# 定义全连接层
x = Dense(units=256)(x)
x = Activation('relu')(x)
x = Dense(units=10)(x)
outputs = Activation('softmax')(x)
# 定义模型
model = Model(inputs=inputs, outputs=outputs)
```
在上面的代码中,我们首先定义了输入层,然后添加了三个卷积层和激活函数。接着,我们将卷积层的输出展开,然后通过Lambda层添加LMMD嵌入。最后,我们添加两个全连接层和激活函数,最终输出层采用softmax激活函数。最终,我们将输入和输出传递给Model函数,得到一个完整的模型。
阅读全文