请详细解释一下这段代码,每一句给上相应的详细注解:def reader(f): try: df = pd.read_csv(f, index_col="Time", usecols=['Time', 'AccV', 'AccML', 'AccAP', 'StartHesitation', 'Turn' , 'Walking']) df['Id'] = f.split('/')[-1].split('.')[0] df['Module'] = pathlib.Path(f).parts[-2] df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin").astype(np.float32) df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) return df except: pass train = pd.concat([reader(f) for f in tqdm(train)]).fillna(0); print(train.shape) cols = [c for c in train.columns if c not in ['Id','Subject','Module', 'Time', 'StartHesitation', 'Turn' , 'Walking', 'Valid', 'Task','Event']] pcols = ['StartHesitation', 'Turn' , 'Walking'] scols = ['Id', 'StartHesitation', 'Turn' , 'Walking']
时间: 2023-08-20 07:27:35 浏览: 98
AndroidIOC获取注解(XUtils方式)实现Demo代码简单注解详细欢迎阅读.rar
这段代码的功能是读取多个CSV文件,并将它们合并为一个大的DataFrame,并进行一些特征工程。下面是每行代码的详细注释:
```python
def reader(f): # 定义一个函数,输入参数为文件路径f
try: # 尝试执行以下代码
# 读取f文件中的csv数据,其中"Time"列为索引列,只读取列"Time", "AccV", "AccML", "AccAP", "StartHesitation", "Turn", "Walking"
df = pd.read_csv(f, index_col="Time", usecols=['Time', 'AccV', 'AccML', 'AccAP', 'StartHesitation', 'Turn' , 'Walking'])
# 将f文件的文件名作为Id列添加到DataFrame中
df['Id'] = f.split('/')[-1].split('.')[0]
# 将f文件的父目录名称添加到Module列中
df['Module'] = pathlib.Path(f).parts[-2]
# 将时间轴标准化到[0, 1]范围内
df['Time_frac']=(df.index/df.index.max()).values
# 将数据按照Id进行左连接,连接tasks中的't_kmeans'列,如果缺失值则用-1填充
df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1)
# 将数据按照Id进行左连接,连接subjects中的's_kmeans'列,如果缺失值则用-1填充
df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1)
# 将数据按照Id和Subject进行左连接,连接metadata_complex中的['Visit','Test','Medication','s_kmeans']列,如果缺失值则用-1填充
df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1)
# 对df数据进行特征工程,返回DataFrame,计算的特征包括初始窗口和最终窗口
df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin").astype(np.float32)
# 将df和df_feats按照索引进行左连接
df = df.merge(df_feats, how="left", left_index=True, right_index=True)
# 对df中的缺失值进行前向填充
df.fillna(method="ffill", inplace=True)
# 返回处理后的DataFrame
return df
except: # 如果执行失败,则跳过该文件
pass
# 对train列表中的所有文件进行读取和处理,并将它们合并到一个DataFrame中
train = pd.concat([reader(f) for f in tqdm(train)]).fillna(0)
# 打印合并后DataFrame的形状
print(train.shape)
# 选取要用于训练的列,去除不需要的列
cols = [c for c in train.columns if c not in ['Id','Subject','Module', 'Time', 'StartHesitation', 'Turn' , 'Walking', 'Valid', 'Task','Event']]
# 保留用于分析的列
pcols = ['StartHesitation', 'Turn' , 'Walking']
# 保留用于聚类的列
scols = ['Id', 'StartHesitation', 'Turn' , 'Walking']
```
阅读全文