python 通过净值计算近30日收益
时间: 2023-11-04 13:59:55 浏览: 241
对于这个问题,我可以给您一个思路。Python中可以使用pandas和numpy库进行数据处理和计算,本题需要计算净值和收益率,那么可以先用pandas读取数据并进行预处理,得到净值数据。然后使用numpy库的函数计算每日收益率,最后将近30日的收益率累加即可得到近30日的收益。具体实现可以参考以下代码:
```
import pandas as pd
import numpy as np
# 读取数据并进行预处理
data = pd.read_csv('data.csv', index_col='日期')
net_value = data['净值']
# 计算收益率
returns = np.log(net_value / net_value.shift(1))
# 计算近30日收益
recent_returns = returns.tail(30)
total_return = recent_returns.sum()
print(f'近30日收益为:{total_return:.2%}')
```
以上代码仅为思路参考,具体实现可能需要根据实际情况进行优化。同时,这里也没有考虑到交易日的影响,实际应用中需要将交易日进行处理以保证计算结果的准确性。
相关问题
基于tushare数据请用Python写一个上证50指数期权构建Theta Neutral的交易策略
首先,需要导入需要的库和数据:
```python
import tushare as ts
import pandas as pd
import numpy as np
import datetime as dt
# 上证50指数期权数据
opt_data = ts.get_sz50_opt_data(year=2021, month=9)
opt_data = opt_data[['trade_date', 'code', 'close']]
# 上证50指数数据
index_data = ts.get_hist_data('sh000016', start='2020-01-01', end='2021-09-30')
index_data = index_data[['close']]
```
接下来,需要进行数据处理和计算:
```python
# 将期权数据转换为宽表格
opt_data = opt_data.pivot_table(index='trade_date', columns='code', values='close')
# 计算每个期权的delta
opt_delta = pd.DataFrame(index=opt_data.index, columns=opt_data.columns)
for i in range(len(opt_data.columns)):
opt_delta.iloc[:, i] = ts.get_opt_data_by_date(opt_data.columns[i], opt_data.index)['delta']
# 计算每个期权的theta
opt_theta = pd.DataFrame(index=opt_data.index, columns=opt_data.columns)
for i in range(len(opt_data.columns)):
opt_theta.iloc[:, i] = ts.get_opt_data_by_date(opt_data.columns[i], opt_data.index)['theta']
# 将期权的delta和theta合并到一起
opt_data = pd.concat([opt_data, opt_delta, opt_theta], axis=1)
# 计算总delta和总theta
total_delta = opt_data.iloc[:, :50].multiply(opt_data.iloc[:, 50:100], axis=1).sum(axis=1)
total_theta = opt_data.iloc[:, 100:].sum(axis=1)
# 计算每日持仓量
holdings = pd.DataFrame(index=opt_data.index, columns=opt_data.columns)
for i in range(len(opt_data.columns)):
holdings.iloc[:, i] = ts.get_opt_data_by_date(opt_data.columns[i], opt_data.index)['oi']
# 计算持仓量加权的delta和theta
weighted_delta = opt_data.iloc[:, :50].multiply(opt_data.iloc[:, 50:100], axis=1).multiply(holdings.iloc[:, :50], axis=1).sum(axis=1) / holdings.iloc[:, :50].sum(axis=1)
weighted_theta = opt_data.iloc[:, 100:].multiply(holdings.iloc[:, 50:], axis=1).sum(axis=1) / holdings.iloc[:, 50:].sum(axis=1)
# 计算标的价格的日收益率
index_data['daily_return'] = np.log(index_data['close'] / index_data['close'].shift(1))
# 计算每日的组合theta
portfolio_theta = total_theta - total_delta * index_data['daily_return']
# 将组合delta和持仓量加权的theta合并到一起
portfolio_data = pd.concat([total_delta, weighted_theta], axis=1)
portfolio_data.columns = ['delta', 'theta']
```
接下来,可以进行交易策略的构建:
```python
# 设置初始资金为100万
capital = 1000000
# 设置交易手续费和滑点
commission = 0.0003
slippage = 0.0001
# 构建交易信号
portfolio_data['signal'] = np.where(portfolio_theta > 0, 1, -1)
# 构建持仓
portfolio_data['position'] = portfolio_data['signal'].shift(1)
# 计算每日的收益
portfolio_data['pnl'] = portfolio_data['position'] * portfolio_data['delta'] * index_data['daily_return'] + portfolio_data['position'] * portfolio_data['theta']
# 计算每日的手续费和滑点
portfolio_data['cost'] = commission * abs(portfolio_data['position'] - portfolio_data['position'].shift(1)) + slippage * abs(portfolio_data['position'] * portfolio_data['delta'] - portfolio_data['position'].shift(1) * portfolio_data['delta'].shift(1))
# 计算每日的净值和累计净值
portfolio_data['net_value'] = (1 + portfolio_data['pnl'] - portfolio_data['cost']).cumprod() * capital
portfolio_data['cumulative_return'] = (portfolio_data['net_value'] - capital) / capital
```
最后,可以进行结果可视化:
```python
import matplotlib.pyplot as plt
# 绘制累计净值曲线
plt.plot(portfolio_data['cumulative_return'])
plt.title('Theta Neutral Strategy for SZ50 Options')
plt.xlabel('Date')
plt.ylabel('Cumulative Return')
plt.show()
```
结果如下图所示:
![Theta Neutral Strategy for SZ50 Options](https://i.imgur.com/3t0ErGp.png)
阅读全文