cbam注意力机制pytorch
时间: 2023-05-26 20:01:48 浏览: 259
CBAM(Convolutional Block Attention Module)是一种针对卷积神经网络(CNN)的注意力机制,在PyTorch中可以使用以下代码实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class CBAM_Module(nn.Module):
def __init__(self, channels, reduction=16):
super(CBAM_Module, self).__init__()
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(channels, channels // reduction, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(channels // reduction, channels, bias=False)
self.sigmoid_channel = nn.Sigmoid()
self.sigmoid_spatial = nn.Sigmoid()
self.conv = nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3)
def forward(self, x):
max_out = self.max_pool(x)
avg_out = self.avg_pool(x)
max_out = max_out.view(max_out.size(0), -1)
avg_out = avg_out.view(avg_out.size(0), -1)
out = torch.cat((max_out, avg_out), dim=1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
channel_attention = self.sigmoid_channel(out)
channel_attention = channel_attention.view(channel_attention.size(0), channel_attention.size(1), 1, 1)
x = x * channel_attention
spatial_attention = torch.mean(x, dim=1, keepdim=True)
spatial_attention = self.conv(spatial_attention)
spatial_attention = self.sigmoid_spatial(spatial_attention)
x = x * spatial_attention
return x
```
这个模块包含两个部分:通道注意力和空间注意力。通道注意力用来对每个通道的特征进行加权,从而强化重要的特征,减弱不重要的特征。空间注意力则用来对特征图中的每个位置进行加权,以便在不同的位置上聚焦于重要的特征。
通过在CNN中使用CBAM模块,可以提高模型的性能和准确性。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)