python实现opencv手部二值化处理

时间: 2023-09-11 12:04:08 浏览: 109
以下是Python实现OpenCV手部二值化处理的示例代码: ```python import cv2 # 读取图像并将其转换为灰度图像 img = cv2.imread("hand.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 对图像进行高斯模糊处理 blur = cv2.GaussianBlur(gray, (5, 5), 0) # 对图像进行二值化处理 ret, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) # 显示原始图像和处理后的图像 cv2.imshow("Original Image", img) cv2.imshow("Binary Image", thresh) # 等待按下任意按键后关闭窗口 cv2.waitKey(0) cv2.destroyAllWindows() ``` 在这个示例中,我们首先读取一张手部图片并将其转换为灰度图像。然后我们使用高斯模糊对图像进行平滑处理,以去除噪声。接下来,我们使用`cv2.threshold()`函数对图像进行二值化处理。其中,`cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU`参数组合表示使用OTSU方法进行自适应阈值处理,并对二值化结果进行反转。 最后,我们使用`cv2.imshow()`函数显示原始图像和处理后的二值化图像,并使用`cv2.waitKey()`函数等待按下任意按键后关闭窗口。
相关问题

python opencv实现手指计数

使用Python和OpenCV实现手指计数的过程大致分为以下几个步骤: 1. 读取视频或者摄像头数据 2. 预处理图像,包括二值化、腐蚀、膨胀等操作,使手部区域更加明显 3. 检测手部区域,可以使用肤色检测或者基于特征点的方法 4. 检测手指数量,可以通过计算手部区域的凸包、凹包等特征点数量来得到 下面是一个简单的Python OpenCV手指计数代码示例,仅供参考: ``` import cv2 import numpy as np # 创建VideoCapture对象读取视频流或者摄像头数据 cap = cv2.VideoCapture(0) while True: # 读取一帧图像 ret, frame = cap.read() # 预处理图像,使用肤色检测方法 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) lower_skin = np.array([0, 20, 70], dtype=np.uint8) upper_skin = np.array([20, 255, 255], dtype=np.uint8) mask = cv2.inRange(hsv, lower_skin, upper_skin) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # 寻找轮廓并绘制最大轮廓 contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) > 0: c = max(contours, key=cv2.contourArea) cv2.drawContours(frame, [c], -1, (0, 255, 255), 2) # 计算凸包并绘制 hull = cv2.convexHull(c) cv2.drawContours(frame, [hull], -1, (0, 0, 255), 3) # 计算凸缺陷并绘制 defects = cv2.convexityDefects(c, cv2.convexHull(c, returnPoints=False)) count = 0 for i in range(defects.shape): s, e, f, d = defects[i] start = tuple(c[s]) end = tuple(c[e]) far = tuple(c[f]) if d > 10000: count += 1 cv2.line(frame, start, end, (0, 255, 0), 2) cv2.circle(frame, far, 5, (0, 0, 255), -1) # 显示手指数量 cv2.putText(frame, "Finger Count: {}".format(count+1), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) # 显示图像 cv2.imshow("frame", frame) # 按下"q"键退出程序 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源并关闭窗口 cap.release() cv2.destroyAllWindows() ```

python实现手势识别_OpenCV+python手势识别框架和实例讲解

好的,下面是关于Python实现手势识别的讲解。 手势识别是计算机视觉领域的一个重要应用,可以应用于很多场景,比如手势控制智能家居、手势控制游戏等。本文介绍一种基于OpenCV和Python实现的手势识别框架。 首先,需要安装OpenCV库。可以通过pip install opencv-python安装。 接下来,需要准备一些训练数据。可以使用手势识别数据集,也可以自己录制一些手势视频作为训练数据。这里以自己录制的视频为例。 步骤如下: 1.读取视频帧 使用OpenCV读取视频帧,可以使用cv2.VideoCapture()函数。代码如下: ``` python import cv2 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这里使用的是电脑自带的摄像头,如果使用外接摄像头,则需要将0改为1或者2等,表示摄像头的编号。 2.手势检测 对于每一帧图像,需要进行手势检测,可以使用肤色检测的方法。代码如下: ``` python import cv2 import numpy as np cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # 翻转图像 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 转换颜色空间 lower_skin = np.array([0, 20, 70], dtype=np.uint8) upper_skin = np.array([20, 255, 255], dtype=np.uint8) mask = cv2.inRange(hsv, lower_skin, upper_skin) # 掩膜 res = cv2.bitwise_and(frame, frame, mask=mask) # 图像与运算 cv2.imshow('frame', frame) cv2.imshow('mask', mask) cv2.imshow('res', res) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这里使用的是HSV颜色空间,对肤色进行了阈值处理,得到掩膜,然后进行与运算,得到手部区域。 3.手势识别 对于手部区域,可以使用轮廓检测的方法,得到手部轮廓。代码如下: ``` python import cv2 import numpy as np cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # 翻转图像 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 转换颜色空间 lower_skin = np.array([0, 20, 70], dtype=np.uint8) upper_skin = np.array([20, 255, 255], dtype=np.uint8) mask = cv2.inRange(hsv, lower_skin, upper_skin) # 掩膜 res = cv2.bitwise_and(frame, frame, mask=mask) # 图像与运算 gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) # 灰度图像 ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 二值化 _, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = max(contours, key=cv2.contourArea) # 手部轮廓 cv2.drawContours(frame, [cnt], 0, (0, 255, 0), 2) # 绘制轮廓 cv2.imshow('frame', frame) cv2.imshow('mask', mask) cv2.imshow('res', res) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这里使用的是cv2.findContours()函数进行轮廓检测,然后找到最大轮廓,绘制出手部轮廓。 4.手势分类 对于手部轮廓,可以使用机器学习算法进行分类,得到手势的类别。这里使用KNN算法进行分类。代码如下: ``` python import cv2 import numpy as np from sklearn.neighbors import KNeighborsClassifier cap = cv2.VideoCapture(0) k = 5 # KNN算法中的k值 hand_hist = None # 手部直方图 # 训练KNN分类器 def train_knn(): global hand_hist # 读取训练数据 with np.load('hand_data.npz') as data: train = data['train'] train_labels = data['train_labels'] # 计算手部直方图 hsv = cv2.cvtColor(train, cv2.COLOR_BGR2HSV) roi = np.zeros([1, 50, 50, 3], dtype=hsv.dtype) roi[0] = hsv[0:50, 0:50] hsv_hist = cv2.calcHist(roi, [0, 1], None, [180, 256], [0, 180, 0, 256]) cv2.normalize(hsv_hist, hsv_hist, 0, 255, cv2.NORM_MINMAX) hand_hist = hsv_hist.reshape([1, 180 * 256]) # 训练KNN分类器 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(hand_hist, train_labels) return knn # 手势分类 def classify(frame, knn): global hand_hist hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0, 1], hand_hist, [0, 180, 0, 256], 1) _, thresh = cv2.threshold(dst, 0, 255, cv2.THRESH_BINARY) thresh = cv2.merge((thresh, thresh, thresh)) res = cv2.bitwise_and(frame, thresh) gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) _, contours, hierarchy = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours) > 0: cnt = max(contours, key=cv2.contourArea) if cv2.contourArea(cnt) > 1000: x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) roi = gray[y:y + h, x:x + w] roi = cv2.resize(roi, (50, 50), interpolation=cv2.INTER_LINEAR) roi = roi.reshape([1, 50 * 50]) result = knn.predict(roi) cv2.putText(frame, chr(result + 65), (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) return frame # 训练KNN分类器 knn = train_knn() while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # 翻转图像 if hand_hist is None: cv2.putText(frame, 'Press Space to calibrate', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) else: frame = classify(frame, knn) cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break elif cv2.waitKey(1) & 0xFF == ord(' '): hand_hist = None cap.release() cv2.destroyAllWindows() ``` 这里使用的是KNN算法进行分类,需要先训练KNN分类器。训练数据可以使用手势识别数据集,也可以使用自己录制的手势视频。这里使用的是手势识别数据集。训练数据需要保存到文件中,可以使用numpy.savez()函数进行保存,使用numpy.load()函数进行读取。 对于每一帧图像,需要先计算手部直方图,然后使用cv2.calcBackProject()函数进行反向投影,得到手部区域。对手部区域进行二值化、轮廓检测、矩形框选、手势分类等操作,最终得到手势类别。 以上就是基于OpenCV和Python实现手势识别的框架和实例讲解。
阅读全文

相关推荐

最新推荐

recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于springboot的简历系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

“招聘智能化”:线上招聘问答系统的功能开发

互联网技术经过数十年的发展,已经积累了深厚的理论基础,并在实际应用中无处不在,极大地消除了地理信息的障碍,实现了全球即时通讯,极大地便利了人们的日常生活。因此,利用计算机技术设计的线上招聘问答系统,不仅在管理上更加系统化和操作性强,更重要的是在数据保存和使用上能够节省大量时间,使得系统变得非常高效和实用。 线上招聘问答系统采用MySQL作为数据管理工具,Java作为编码语言,以及SSM框架作为开发架构。系统主要实现了简历管理、论坛帖子管理、职位招聘管理、职位招聘留言管理、招聘岗位管理、所在行业管理以及求职意向管理等功能。 该系统的设计不仅方便了操作人员,而且合理性高,能有效避免误操作,确保数据在录入时就符合设计要求,从而最大限度地减少源头性输入错误,使数据更加可控和可靠,将出错率降至最低。
recommend-type

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况 #特别是当用于接入双馈风机时

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况。 #特别是当用于接入双馈风机时,用powergui无法进行潮流计算,通过此方法能过很好的解决此问题。 有参考文献。
recommend-type

给袋式真空包装机UG10全套技术资料100%好用.zip

给袋式真空包装机UG10全套技术资料100%好用.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"