目标检测voc数据集怎么转成COCO数据集
时间: 2023-09-29 15:04:29 浏览: 194
将VOC数据集转换为COCO数据集的过程如下:
1. 下载COCO格式转换工具:从Github上下载coco_format.py文件,该文件是一个Python脚本,可用于将VOC格式的数据集转换为COCO格式的数据集。
2. 安装Python:安装Python环境,以便执行coco_format.py文件。
3. 安装Python包:安装必要的Python包,例如numpy、Pillow等,以便在执行coco_format.py文件时使用。
4. 准备VOC数据集:将VOC格式的数据集准备好,包括JPEG图片和相应的XML注释文件。
5. 运行脚本:使用Python运行coco_format.py文件,并指定VOC格式数据集的路径和输出COCO格式数据集的路径。
6. 验证数据集:使用COCO API中的验证工具,验证转换后的数据集是否符合COCO格式的要求。
注意事项:
在转换数据集之前,需要花费一些时间了解COCO格式的数据集结构和注释文件格式。此外,还需要确保VOC格式的数据集中包含所有必要的注释信息,例如类别标签、边界框坐标等。
相关问题
把voc数据集转换成coco数据集的python代码
### 回答1:
可以试试这段代码:import json
from pycocotools.coco import COCO# 读取voc数据集
annFile = 'voc.json'
with open(annFile, 'r') as f:
voc = json.load(f)# 创建coco数据集
outFile = 'coco.json'
coco = COCO()# 将voc数据集转换成coco数据集
for img in voc:
image = coco.loadImgs(img['filename'])[0]
coco.anns.update(img['annotation'])
coco.imgToAnns[image['id']] = img['annotation']# 保存coco数据集
with open(outFile, 'w') as f:
json.dump(coco.dataset, f)
### 回答2:
以下是一个将VOC数据集转换为COCO数据集格式的Python代码:
```python
import os
import json
import xml.etree.ElementTree as ET
def convert_voc_to_coco(voc_root_folder, save_path):
coco_data = {
"info": {"year": 2022, "version": "1.0", "description": "VOC to COCO conversion"},
"images": [],
"annotations": [],
"categories": []
}
categories = {}
image_id = 1
annotation_id = 1
for dirpath, dirnames, filenames in os.walk(voc_root_folder):
for xml_file in filenames:
if xml_file.endswith(".xml"):
xml_path = os.path.join(dirpath, xml_file)
tree = ET.parse(xml_path)
root = tree.getroot()
image_info = {}
image_info["id"] = image_id
image_info["file_name"] = root.find("filename").text
image_info["height"] = int(root.find("size/height").text)
image_info["width"] = int(root.find("size/width").text)
coco_data["images"].append(image_info)
for obj in root.findall("object"):
category = obj.find("name").text
if category not in categories:
cat_id = len(categories) + 1
categories[category] = cat_id
cat_info = {"id": cat_id, "name": category}
coco_data["categories"].append(cat_info)
annotation_info = {}
annotation_info["id"] = annotation_id
annotation_info["category_id"] = categories[category]
annotation_info["image_id"] = image_id
bbox = obj.find("bndbox")
annotation_info["bbox"] = [
float(bbox.find("xmin").text),
float(bbox.find("ymin").text),
float(bbox.find("xmax").text) - float(bbox.find("xmin").text),
float(bbox.find("ymax").text) - float(bbox.find("ymin").text)
]
annotation_info["area"] = annotation_info["bbox"][2] * annotation_info["bbox"][3]
coco_data["annotations"].append(annotation_info)
annotation_id += 1
image_id += 1
with open(save_path, "w") as json_file:
json.dump(coco_data, json_file)
# Usage example:
voc_root_folder = "path/to/voc/root/folder"
save_path = "path/to/save/coco/dataset.json"
convert_voc_to_coco(voc_root_folder, save_path)
```
以上代码将VOC数据集中的每个XML文件解析为COCO数据集中的图像和标注信息,并将结果保存为JSON格式的COCO数据集文件。请根据实际情况修改`voc_root_folder`和`save_path`为实际路径。
### 回答3:
将VOC数据集转换为COCO数据集的Python代码如下:
```python
import os
import glob
import json
from PIL import Image
def convert_voc_to_coco(voc_data_dir, coco_output_dir):
# 创建COCO数据集的目录结构
os.makedirs(coco_output_dir, exist_ok=True)
os.makedirs(os.path.join(coco_output_dir, 'images'), exist_ok=True)
os.makedirs(os.path.join(coco_output_dir, 'annotations'), exist_ok=True)
# 获取VOC数据集中的图像列表
image_files = glob.glob(os.path.join(voc_data_dir, 'JPEGImages', '*.jpg'))
# 创建COCO数据集的categories列表
categories = [{'id': 1, 'name': 'object'}]
# 创建COCO数据集的images列表和annotations列表
images = []
annotations = []
image_id = 1
annotation_id = 1
for image_file in image_files:
# 复制图像文件到COCO数据集的images目录下
image_name = os.path.basename(image_file)
image_dest_file = os.path.join(coco_output_dir, 'images', image_name)
os.makedirs(os.path.dirname(image_dest_file), exist_ok=True)
os.system(f'cp {image_file} {image_dest_file}')
# 读取VOC标注文件
annotation_file = os.path.join(voc_data_dir, 'Annotations', f'{os.path.splitext(image_name)[0]}.xml')
# 解析标注信息
# ...
# 创建COCO数据集的image信息
image_info = {
'id': image_id,
'file_name': image_name,
'width': image_width,
'height': image_height
}
images.append(image_info)
# 创建COCO数据集的annotation信息
annotation_info = {
'id': annotation_id,
'image_id': image_id,
'category_id': 1, # 假设只有一个类别
'bbox': [xmin, ymin, width, height],
'area': width * height
}
annotations.append(annotation_info)
image_id += 1
annotation_id += 1
# 构建COCO数据集的JSON文件内容
coco_data = {
'images': images,
'annotations': annotations,
'categories': categories
}
# 将COCO数据集的JSON文件保存到annotations目录下
coco_file = os.path.join(coco_output_dir, 'annotations', 'instances.json')
json.dump(coco_data, open(coco_file, 'w'), indent=4)
if __name__ == '__main__':
voc_data_dir = '/path/to/voc_data'
coco_output_dir = '/path/to/coco_data'
convert_voc_to_coco(voc_data_dir, coco_output_dir)
```
该代码将VOC数据集的图像文件和标注文件转换为COCO数据集的图像文件和JSON格式的标注文件。在转换过程中,先复制图像文件到COCO数据集的images目录下,并解析VOC标注文件提取相关信息,然后构建COCO数据集的images列表和annotations列表,最后将生成的COCO数据集的JSON文件保存到annotations目录下。
VOC数据集格式转coco数据集格式
将VOC数据集转换为COCO数据集需要进行以下步骤:
1. 将VOC数据集中的图片和标注文件分别放在两个文件夹中,例如:images文件夹和annotations文件夹。
2. 安装pycocotools库,该库可以通过pip install pycocotools命令进行安装。
3. 创建一个空的COCO数据集,可以使用以下代码:
```
from pycocotools.coco import COCO
coco = COCO()
```
4. 遍历VOC数据集中的每个标注文件,将其转换为COCO数据集中的格式,并添加到COCO数据集中。以下是一个示例代码:
```
import os
import xml.etree.ElementTree as ET
from pycocotools.coco import COCO
from pycocotools import mask as maskUtils
# 初始化COCO数据集
coco = COCO()
# 添加类别
classes = ['person', 'car', 'bus', 'truck']
for i, cls in enumerate(classes):
coco.add_category({'id': i + 1, 'name': cls})
# 遍历VOC数据集中的每个标注文件
annotations_dir = 'annotations'
for filename in os.listdir(annotations_dir):
if not filename.endswith('.xml'):
continue
# 解析标注文件
tree = ET.parse(os.path.join(annotations_dir, filename))
root = tree.getroot()
# 获取图片信息
image_id = int(root.find('filename').text.split('.')[0])
width = int(root.find('size/width').text)
height = int(root.find('size/height').text)
# 添加图片信息
coco.add_image({
'id': image_id,
'width': width,
'height': height,
'file_name': f'{image_id}.jpg'
})
# 遍历标注信息
for obj in root.findall('object'):
cls = obj.find('name').text
bbox = obj.find('bndbox')
x1 = int(bbox.find('xmin').text)
y1 = int(bbox.find('ymin').text)
x2 = int(bbox.find('xmax').text)
y2 = int(bbox.find('ymax').text)
# 添加标注信息
coco.add_annotation({
'id': len(coco.dataset['annotations']) + 1,
'image_id': image_id,
'category_id': classes.index(cls) + 1,
'bbox': [x1, y1, x2 - x1, y2 - y1],
'area': (x2 - x1) * (y2 - y1),
'iscrowd': 0,
'segmentation': maskUtils.frPyObjects([[x1, y1, x2, y1, x2, y2, x1, y2]], height, width)
})
```
5. 将COCO数据集保存为JSON格式的文件,可以使用以下代码:
```
import json
with open('coco.json', 'w') as f:
json.dump(coco.dataset, f)
```
阅读全文