a=[1,2,1]; b=[1,2]; p=0.5; t=0:p:5; x=exp(-2*t); lsim(b,a,x,t); hold on 每行代码意思
时间: 2024-06-05 15:10:15 浏览: 105
a=[1,2,1]; b=[1,2]; p=0.5; t=0:p:5; x=exp(-2*t); lsim(b,a,x,t); hold on;
这段代码的含义是:
1. 定义向量 `a` 和 `b`,分别赋值为 `[1, 2, 1]` 和 `[1, 2]`;
2. 定义变量 `p`,赋值为 `0.5`;
3. 定义向量 `t`,从 `0` 到 `5`,每隔 `p` 个单位生成一个数,即 `t=[0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]`;
4. 定义向量 `x`,对 `t` 中的每个元素 `t(i)`,计算 `exp(-2*t(i))`,即 `x=[1, 0.6065, 0.3679, 0.2231, 0.1353, 0.0821, 0.0498, 0.0302, 0.0183, 0.0111, 0.0067]`;
5. 使用 `lsim` 函数,对系统的单位阶跃响应进行仿真,其中输入信号为 `x`,输出信号的系统函数为 `b/a`,时域范围为 `t`,并将结果绘制出来;
6. 使用 `hold on` 命令,保持当前图形,并在其上添加更多图形。
相关问题
初始化概率为P(A=1)=0.5,P(B=1|A=1)=0.6,P(B=1|A=0)=0.5,给定有缺失训练数据d1=(?,0), d2=(0,?),d3=(1,1),d4=(?,0),d5=(1,?), 利用EM算法计算CPT表
EM算法是一种迭代算法,用于估计有缺失数据的模型参数。在这个问题中,我们需要估计CPT表中的概率。具体而言,我们需要估计P(A=1), P(B=1|A=1), P(B=1|A=0)这三个概率。
首先,我们需要初始化这些参数,根据题意,P(A=1)=0.5, P(B=1|A=1)=0.6, P(B=1|A=0)=0.5。
接下来,我们进入EM算法的迭代过程。假设当前迭代次数为t,我们需要计算在当前参数下,缺失数据d1和d2的概率分布。具体而言,我们需要计算P(A=1|B=0,d1),P(A=0|B=0,d2),以及P(B=1|d3), P(A=1|B=0,d4), P(B=1|A=1,d5)这五个概率。
根据贝叶斯公式,可以得到:
P(A=1|B=0,d1) = P(B=0|A=1,d1) * P(A=1) / P(B=0|d1)
= (1 - P(B=1|A=1)) * P(A=1) / (1 - P(B=1|A=1)) * P(A=1) + (1 - P(B=1|A=0)) * P(A=0)
= 0.4
P(A=0|B=0,d2) = P(B=0|A=0,d2) * P(A=0) / P(B=0|d2)
= (1 - P(B=1|A=0)) * P(A=0) / (1 - P(B=1|A=0)) * P(A=0) + (1 - P(B=1|A=1)) * P(A=1)
= 0.57
P(B=1|d3) = P(B=1|A=1,d3) * P(A=1) + P(B=1|A=0,d3) * P(A=0)
= 0.6 * 0.5 + 0.5 * 0.5
= 0.55
P(A=1|B=0,d4) = P(B=0|A=1,d4) * P(A=1) / P(B=0|d4)
= (1 - P(B=1|A=1)) * P(A=1) / (1 - P(B=1|A=1)) * P(A=1) + (1 - P(B=1|A=0)) * P(A=0)
= 0.4
P(B=1|A=1,d5) = P(B=1|A=1) = 0.6
然后,我们需要根据这些概率分布,重新估计参数。具体而言,我们可以用以下公式来更新参数:
P(A=1) = (P(A=1|B=0,d1) + P(A=1|B=0,d4) + P(A=1|B=1,d5)) / 3
P(B=1|A=1) = (P(B=1|d3) + P(B=1|A=1,d5)) / 2
P(B=1|A=0) = (P(B=1|A=0,d1) + P(B=1|d3)) / 2
然后,我们再次进入迭代过程,计算缺失数据的概率分布,并用这些分布来更新参数。重复这个过程,直到参数收敛。最终得到的参数即为所求的CPT表。
clear all;close all;clc format short g sigma = 0.2; p = 1; PlotLength =5000; length1=PlotLength+100+1000; a = [1,-0.56,0.42]; b = [0,0.9,0.6]; c = [1,-0.3,0.2]; d = [1,0.3,-0.2]; na=2;nb=2;nc=2;nd=2; n1=na+nb; n2=nc+nd; pr0=[a(2:na+1), b(2:nb+1), c(2:nc+1), d(2:nd+1)]'; n=length(pr0); p0=10^6; P2= eye(n)*p0; pr1=ones(n,1)/p0; pr2=pr1; rand('state',15); u=(rand(length1,1)-0.5)*sqrt(12); randn('state',15); v=randn(length1,1)*sigma; y=ones(10*n,1)/p0; w=zeros(n,1); for t=n:length1 w(t)=pr0(n1+1:n)'*[-w(t-1:-1:t-nc);v(t-1:-1:t-nd)]+v(t); y(t)=pr0(1:n1)'*[-y(t-1:-1:t-na);u(t-1:-1:t-nb)]+w(t); end w1=ones(10*n,1)/p0; w2=w1; v1=ones(10*n,1)/p0; v2=v1; j1=0;jj=0; for t=24:length1 jj=jj+1; % MI-RGELS i=1; for k=t:-1:t-p+1 varphi2=[-y(t-1:-1:t-na);u(t-1:-1:t-nb);-w2(t-1:-1:t-nc);v2(t-1:-1:t-nd)]; Phi2(:,i)=varphi2; i=i+1; end Y=y(t:-1:t-p+1); L2=P2*Phi2/(eye(p)+Phi2'*P2*Phi2); P2=P2-L2*(Phi2'*P2); pr2=pr2+L2*(Y-Phi2'*pr2); w2(t)=y(t)-Phi2(1:n1,1)'*pr2(1:n1); v2(t)=y(t)-Phi2(:,1)'*pr2; if jj==length1; break end end
这段代码实现了多新息递推最小二乘辨识算法(MI-RGELS)并进行了仿真实验。其中包括了参数初始化、随机序列生成、系统输出计算和MI-RGELS算法的迭代过程。
在这段代码中,首先对参数进行了初始化,然后生成随机序列`u`和噪声序列`v`。接着通过循环计算系统输出`y`和创新项`w`。
在MI-RGELS算法的迭代过程中,使用了矩阵形式的MI-RGELS算法来估计参数向量。通过迭代更新参数估计值`pr2`,同时更新创新项`w2`和噪声项`v2`。最后,通过循环进行多次迭代,直到达到指定的仿真长度。
请注意,这只是一个简单的示例,可能需要根据具体需求进行修改和优化。希望对您有所帮助!
阅读全文
相关推荐

















