PyTorch 的超分辨率重建代码
时间: 2023-06-16 16:07:28 浏览: 187
以下是一个简单的 PyTorch 超分辨率重建代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor, Resize
# 定义超分辨率模型
class SuperResolutionModel(nn.Module):
def __init__(self, upscale_factor):
super(SuperResolutionModel, self).__init__()
self.upscale_factor = upscale_factor
self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5, padding=2)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(in_channels=32, out_channels=3 * (upscale_factor ** 2), kernel_size=3, padding=1)
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.pixel_shuffle(self.conv3(x))
return x
# 加载数据集
train_dataset = CIFAR10(root='data/', train=True, download=True, transform=ToTensor())
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 实例化模型和优化器
model = SuperResolutionModel(upscale_factor=2)
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = nn.MSELoss()(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
```
在这个示例中,我们定义了一个简单的超分辨率模型 `SuperResolutionModel`,它包含三个卷积层和一个像素重排层。我们使用 CIFAR10 数据集进行训练,优化器使用 Adam,损失函数为均方误差(MSE)。在训练过程中,我们每 100 个 batch 打印一次损失值。
阅读全文