请利用lightGBM算法对sklearn.datasets.fetch_20newsgroups的数据进行预测,python代码展示
时间: 2024-05-12 19:14:08 浏览: 154
K最近邻算法(KNN)---sklearn+python实现方式
好的,下面是利用lightGBM算法对sklearn.datasets.fetch_20newsgroups的数据进行预测的Python代码:
首先,我们需要导入所需的库和数据集:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 加载数据集
newsgroups = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))
```
接下来,我们将数据集划分为训练集和测试集,并将文本转换为TF-IDF特征向量:
```python
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(newsgroups.data, newsgroups.target, test_size=0.2, random_state=42)
# 将文本转换为TF-IDF特征向量
vectorizer = TfidfVectorizer(stop_words='english')
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
```
然后,我们可以利用lightGBM算法进行训练和预测:
```python
# 定义lightGBM分类器
lgb_clf = lgb.LGBMClassifier()
# 训练模型
lgb_clf.fit(X_train, y_train)
# 预测测试集
y_pred = lgb_clf.predict(X_test)
# 输出准确率
accuracy = np.mean(y_pred == y_test)
print('Accuracy:', accuracy)
```
完整代码如下:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 加载数据集
newsgroups = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(newsgroups.data, newsgroups.target, test_size=0.2, random_state=42)
# 将文本转换为TF-IDF特征向量
vectorizer = TfidfVectorizer(stop_words='english')
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
# 定义lightGBM分类器
lgb_clf = lgb.LGBMClassifier()
# 训练模型
lgb_clf.fit(X_train, y_train)
# 预测测试集
y_pred = lgb_clf.predict(X_test)
# 输出准确率
accuracy = np.mean(y_pred == y_test)
print('Accuracy:', accuracy)
```
阅读全文